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Abstract 

 

 

Distributed computing is very popular in the field of computer science and is widely used 

in web applications. In such systems, tasks and resources are partitioned among 

several computers so that the workload can be shared among the different computers in 

the network, in contrast to systems using a single server computer. Distributed system 

designs are used for many practical reasons and are often found to be more scalable, 

robust and suitable for many applications. 

 

The aim of this thesis is to study the properties of a distributed tree data-structure that 

allow searches, insertions and deletions of data elements. In particular, the b- tree 

structure [13] is considered, which is a generalization of a binary search tree. The study consists 

of analyzing the effect of distributing such a tree among several computers and 

investigates the behavior of such structure over a long period of time by growing the 

network of computers supporting the tree, while the state of the structure is instantly 

updated as insertions and deletions operations are performed. It also attempts to 

validate the necessary and sufficient invariants of the b-tree-structure that guarantee the 

correctness of the search operations. 

 

 

A simulation study is also conducted to verify the validity of such distributed data-

structure and the performance of the algorithm that implements it. Finally, a discussion 

is provided in the end of the thesis to compare the performance of the system design 

with other distributed tree structure designs. 
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1. Introduction  

1.1 Context of the thesis 

Cloud computing typically operates over a huge number of computers or interconnected 

networks and requires some decentralized approaches to overcome the traffic overflow 

that may occur when permanently accessing a certain number of processing units more 

often than others. Choosing the appropriate decentralized indexing structure for data 

organization is crucial in the modern communication systems such that the high volume 

of dynamic data is efficiently accessed and updated without any performance 

bottleneck. 

We consider the b-tree structure [13] which is a tree data-structure that keeps data 

sorted and allows searches, sequential access, insertions, and deletions. The b-tree 

consists of a root node, branch nodes and leaf nodes. The latter contains the indexed 

data values associated with a key. Each node has a routing table that administers its 

communication with the other nodes in the tree. Accordingly, each routing table 

maintains a set of entries where each entry describes a specific range of key values and 

a link to another node in the tree.  The b-tree can be centralized i.e. implemented on 

one peer where all communications are routed through one central hub, or can also be 

distributed on many peers who make it more efficient for data organization and retrieval. 

Using a b-tree structure has many advantages since it is well-understood and has a 

straightforward mechanism for updating the nodes of the trees for data insertions and 

deletions as well as handling unbalanced loads. However, applying such structure on a 

massive-scale computing system may be problematic due to the high traffic that may 

occur for some nodes, which reduces the efficiency of the system. Indeed, the intuitive 

method for distributing the b-tree data structure is to allocate one or more neighboring 

nodes to one peer. Although, this allows the update algorithms on the structure for data 

insertion/deletion to be similar to the centralized version, the peers holding the root may 

get over-loaded with the high traffic, while other peers may remain idle for a long period 

of time. 
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The discussion on the cloud computing research agenda [2] has identified the overhead 

and the high cost of the typical distributed system models with strong-consistency as 

one of the biggest concerns in cloud computing. Therefore, it is preferable to design 

distributed data structures that can allow some degree of inconsistency but still work 

properly. This study consists of designing a distributed implementation of the b-tree data 

structure [13] that works with weak-consistency among its replicated nodes but provides 

strong-consistency in terms of search semantics. 
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1.2  Contribution 

The description of the alternative distribution of the b-tree structure[1] consists of 

replicating the higher level tree nodes in proportion to their usage. So, instead of 

assigning the responsibility of one node to one peer, one branch of the tree, i.e. the path 

from the root to a leaf node is assigned to one peer. As the data structure needs to be 

updated when keys are inserted or deleted to keep the workload balanced among the 

peers, the b-tree data structure grows with key-insertions by splitting a node when the 

number of entries overflows, and shrinks with key-deletions by merging two sibling 

nodes. Hence, the main goal of this work is to practically prove that such structure 

guaranties that the workload is equally distributed among the peers during these 

updates operations even for a larger-scale distributed network. 

 

We start by expressing the required properties of the decentralized b-tree with weak-

consistency [1] using the Alloy modeling language [10] in order to validate the weak-

consistency properties that are necessary and sufficient for maintaining the b-tree 

structure suitable for the search operation. This validation explicitly proved that it is 

possible to construct the distributed b-tree by just invoking the core facts and certain 

constraints that keeps the search operations performing properly in all situations. 

In addition, the major challenge of the update algorithm under the week consistency 

conditions [1] is to find an existing peer whose routing table already contains some 

entries covering some common range of key values. Our contribution consists of 

defining several algorithms which show that finding another peer responsible for the 

requested range is feasible. 
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We also found that there is a dependency between the number of entries and nodes in 

each routing table when one branch of the tree, i.e. the path from the root to a leaf node 

is assigned to one peer in the distributed b-tree structure.  

Therefore, a study is conducted to optimize the system so that the nodes and entries 

remain equally distributed and balanced among the b-tree. Studying the characteristics 

of such approaches let us determine which settings should be used to reach the highest 

performance of the distributed b- tree with weak-consistency in terms of number of 

exchanged messages and execution time. 

 

 

This study showed also that the depth, i.e. the minimum number of traversed nodes by 

a search query from the root to the leaf nodes of the tree, obtained after a long period of 

tree update operations can be maintained at the optimal level of L = logp(N) where N is 

the number of peers in the system and p is the number of entries in each node. We 

were also able to determine the average number of peers involved in a single update 

operation, and perform a more thorough comparison between the two decentralized b-

tree organizations with full and weak-consistency, to determine the performances in the 

two settings in terms of time and message complexity. 
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1.3 Thesis organization 

 
The thesis is organized as follows:  Chapter 2 gives a brief overview of the b-tree 

structure and its possible operations, Chapter 3 introduces the decentralized b-tree with 

strong-consistency, and it also illustrates the system model, its assumptions and the 

updates under these strong-consistency conditions. A discussion is then conducted to 

estimate how much consistency is needed and sufficient for correct search and update 

operations on the distributed b+ tree structure. These weak-consistency constrains are 

also introduced. Chapter 4 gives a brief introduction to decentralized b+ tree with weak-

consistency and the split and merges update operations. In Chapter 5, we validate the 

weak-consistency properties by modeling the decentralized b+ tree with weak-

consistency using the Alloy modeling language. Chapter 6 describes the revised 

updates under the weak-consistency conditions and the modified version of the split and 

merges update algorithms. Chapter 7 exposes our conducted simulation of the 

proposed b+ tree with weak-consistency. We first describe our system design and its 

working mechanism; we then discuss the implementation choices that were used for the 

simulation. In chapter 8, we present the results of the simulation by comparing the 

efficiency of the exploration mechanisms and studying the behavior of such structure for 

some particular situations. A discussion is also provided to evaluate the system 

performance and efficiency. 
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2. B-tree structure 

 

2.1 System model 

 

The typical purpose of a b-tree is storing entire records from a database system and 

serving as an in-memory representation of the collection of records, as well as storing 

indices of the collection of records in sorted files. The modernization of the 

communication systems gave birth to new applications of the b-tree structure such as 

fast accessing, reading and writing of disk blocks. Indeed, b-trees have been used for 

storing data elements identified by keys for efficient retrieval in file systems where data 

elements are stored in an array and individual data elements can be selected by an 

index that is usually a non-negative scalar integer. The b-tree algorithm marginalizes 

the number of times a medium is accessed to locate a desired data element, thereby 

speeding up the process. A b-tree in certain aspects is a generalization of a binary 

search tree [16].  The main difference is that nodes of a b-tree may have more than two 

children rather than being limited to only two. Using a larger fan-out, i.e. having many 

tree branches at each node, reduces the height of the tree and thus speeds up the 

search operation whenever we are trying to locate records. 

 

 

We consider the b+ tree variant of the b-tree [13], which is possibly the most widely 

used variant of the b-tree structure. A b+ tree is a height-balanced search tree that 

represents sorted data stored only in the leaf nodes in a way that allows for efficient 

insertion and removal of data elements. In this section, we assume a centralized b+ tree 

structure where all search and update operations are routed through one single hub: the 

root of the tree.  Each tree-node comprises a set of entries that gives more information 

about a given record while the keys and records are stored in the leaf nodes of the b+ 

tree.  
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This makes it easy to maintain accurately updated lists of data that can be accessed 

from the root. Such architecture imposes a certain boundary restrictions to maintain the 

b+ tree balanced which requires maximum and minimum bounds on the number of 

entries in each node of the tree. The figure below shows an example of a b+ tree 

structure: 

 

 

Fig. 2.1.  B+ tree structure with 11 leaf nodes (a-k) 

 

 

 

In the b+ tree structure, all nodes except the leaf nodes have the same structure. Each 

non-leaf node i in the tree maintains a routing table    
  , also called a node, and each 

node comprises a set of entries. Each entry is a tuple  <r,j> where r is a range of key 

values and j is a pointer to a child node in the tree. Each leaf node contains a single 

range, called the local range of the leaf-node, and holds the associated records with key 

values within the range. 
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2.2 Assumptions  

 

The b-tree is designed for indexing one-dimensional data spaces. So, the ranges 

holding the key values are expressed by non-negative integer numbers and key values 

are stored in the nodes in non-decreasing order,  i.e. sorted in lexicographical order, in 

contrast to the generalization of b-tree for key-spaces of arbitrary dimensions where the 

data spaces are expressed by lines or rectangles for two-dimensions as in Quad-tree [7] 

or R-tree [8]. 

For disambiguation, we denote the union of all the ranges of a non-leaf node i by 

        .     refers to the single range held by a leaf node i. We assume a perfect 

successiveness of the ranges in the entries contained in each non-leaf node, i.e. for 

each two successive entries in a given non-leaf node, their corresponding ranges must 

be successive without any gap. Additionally, the root node of the b+ tree describes the 

universe of key values, denoted U, i.e. the union of all key values in the b+ tree, and 

each non-leaf node other than the root maintains a sub-range of U. The size of this sub-

range is reduced as we move to a lower level in the b+ tree. Thus, the lowest level 

describes the local key range of the stored data. Moreover, we assume that each child 

node i in the tree knows his parent node p by means of a back-pointer denoted    
 . 

 

2.3 Possible operations  

 

The algorithms for the search insert and delete operations as well as the data update 

operations are described below: 

 

2.3.1 Key search 

 

The key search operation consists of finding the data associated with a given key value. 

Starting at the root, the tree is recursively traversed from top to bottom by sending the 
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search query from a parent node i,  having an entry <r,j> whose range r includes the 

requested key, to the routing table (node) j pointed to by the routing table entry .  

This procedure is repeated until a leaf node is reached and the corresponding data 

element is then retrieved and the search operation is terminated. 

 

Figure 2.3.1 illustrates an example of a search operation for the key value 100 

performed on the b+ tree illustrated by Fig 2.1. Starting from the root of the b+ tree (1), 

the root localizes the entries that includes the key value 100 and sends the search 

query to its child node using the link associated with the range [70,+∞] (2). Similarly, this 

node localizes the entry [90, +∞] including the key value 100 and forwards the query to 

its child node associated with the latter range. The same procedure is performed in (3) 

and the non-leaf node directs the query to the leaf node k by means of the link 

associated with the range [95, +∞] which includes the key value 100 (4). Finally, the 

data associated with the key 100 in the leaf node is retrieved and the search operation 

is terminated. 

 

Fig. 2.3.1. Search operation for the key value 100 on the b+ tree structure of Fig. 2.1 
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2.3.2 Range search 

In the case of a range search, by analogy to search key, the operation is performed by 

subdividing the range of each non-leaf node containing the requested range into sub-

ranges to include each entry <rk,jk> accordingly. The query is thus redirected to the 

corresponding child jk that hold a sub-range rk. The navigation proceeds to the next 

child nodes, in parallel, by pointing at each hop of the navigation from a parent nodes to 

all child nodes whose range intersect with the range of the search, until each query gets 

to the leaf node holding the target sub-range in its local range. Fig. 2.3.2 describes step 

by step the search for the target range [90, 100). Starting from the top of the tree (1), 

the root directs the query to the child node associated with the entry [70, +∞) (2).  

Similarly, this node redirects the query to the corresponding child node (3).  The latter 

node checks if [90, 100) is included in its range [90, +∞) and the sub-range [90, 100)  is 

then partitioned into 2 distinct sub-ranges [90,95] and [95,100)  to include the two 

entries <[90,95], j> and  <[95,+∞), k> and the query is redirected to the two 

corresponding leaf nodes j and k accordingly, in where the corresponding key values 

are stored (4). 

Fig. 2.3.2.  Search operation for the range [90,100] on the b+ tree structure of Fig. 2.1 
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2.3.3 Key insertion 

 

The insertion operation inserts a new data element associated with a given key value. 

The key value should not be in use prior to the insertion. The operation starts by 

performing the key search operation. Once the lowest level of the b+ tree is reached, 

the key is checked and the data is inserted. In the case when the leaf node becomes 

over-loaded, the node is split into two distinct leaf nodes and the keys and their 

corresponding data elements are accordingly distributed between the two leaf nodes in 

order to keep them balanced. 

 

 

 

2.3.4 Key deletion 

 

The delete operation consists of locating a given key value by performing the search 

operation, and then deleting the data element that may be associated with that key 

value from the corresponding leaf node. Once the delete operation is achieved, the 

corresponding leaf node may remain under-loaded. Thus, the leaf node may be joined 

with another one to form one single leaf node. 
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2.3.5 Update operations 

 

While performing any insertion or deletion operation, a certain number of updates may 

have to be made to the b+ tree structure, contrary to the search operations that maintain 

the b+ tree structure unchanged. One goal of the updates is to keep the b+ tree 

structure as much balanced as possible so that the system can reach its highest search 

performance. The internal nodes may have a variable number of entries within some 

pre-defined limits. When data is inserted or removed from a node, the number of child 

nodes may change. 

 

 In order to maintain the tree balanced, adjacent internal nodes may be joined to create 

a single node if they are under-loaded, and one node may be split into two nodes if it is 

over-loaded. The lower and upper bounds on the number of children are typically fixed 

for a given b+ tree structure. Basically, the lower and upper bounds on the number of 

child nodes are parameterized by an integer number called the order of the tree and 

denoted by p referring to maximum number of entries allowed per node. A b+ tree of 

order p satisfies the following properties:  

 The root node has at least 2 child nodes (if it is not a leaf node)  

 All nodes other than the root have at least ceiling (p/2) entries, where ceiling(x) is 

the smallest integer not less than x. 

 All non-leaf nodes have at most p entries. 

 All leaf nodes are at the same level, i.e. have the same depth from the root. 

 

 

2.3.5.1 Split operation 

 

The split operation occurs when a leaf node or a non-leaf node is over-loaded. When a 

leaf node split is performed, a new node is introduced and the local range of the split 

leaf node is repartitioned into two distinct local ranges     and   .  
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The latter node keeps one of the ranges     while     is associated with the new 

node. In order to keep the search, delete and insert operation performing properly, the 

parent node i.e. the node located at the next higher level in the b+ tree and having the 

original leaf node as a child has to split its entry pointing to the leaf node into two entries 

pointing to the original and new leaf nodes. Therefore, an additional entry is introduced 

at this non-leaf node. This node may become over-loaded if the number of its entries is 

more than p and a split of this non-leaf node is performed similarly to the leaf node split 

operation. However, since a non-leaf node is assumed to have more than one entry, the 

entries are split into two sets of entries; the first set is keep within the original non-leaf 

node while the second set is associated with the new non-leaf node. Additionally, all the 

child nodes associated with the second set are allocated to the introduced node. 

Moreover, the entry of the parent of the original node is also split into two distinct entries 

and the latter node is updated as necessary. 

 

Fig. 2.3.5.1.a and Fig. 2.3.5.1.b show an example before and after the split operation of 

node X in a b+ tree of order 2. 

 

 

Fig. 2.3.5.1.a.  Before the split operation of node X in a b+ tree of order 2 
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Since the node X has 3 entries and hence has exceeded the maximum number of 

entries allowed per node, a new non-leaf node is introduced and node X is partitioned 

into two distinct nodes X1 and X2. The entries of node X are split into two sets of 

entries; the first set corresponding to the range [-∞, 19] is associated with node X1 while 

the second entry having the range [19, 70] is associated with node X2. All the child 

nodes associated with the first set are now allocated to the node X1 while the child 

nodes associated with the second set are allocated to the node X2. Additionally, the 

entry of the parent node that was associated with the split node X is also split into two 

distinct entries accordingly. 

 

 

Fig. 2.3.5.1.b.  After the split operation of node X of Fig. 2.3.5.1.a 

 

 

 

 

 

 

 

70.+ 19.70 

-.19 
19.50 50.70 70.90 90.+ 

-.7 7.19 19.28 28.33 33.50 50.59 59.70 70.76 76.90 90.95 95.+ 

-. 7 

3, 5 

7.19 

8, 17 

19.28 

23, 
27 

28.33 

29, 
32 

33.50 

45, 
49 

50.59 

51, 
53 

59.70 

60, 
68.69 

70.76 

71, 
72, 
73 

76.90 

77. 
87 

90.95 

91. 
92, 
94 

95,+

 

99. 
101 

a                       b                       c                           d                      e                             f                     g                           h                    i                           j                         k  

node X2 

-.19 

node X1 



26 
 

2.3.5.2 Merge operation 

 

In contrary to the split operation, the merge operation occurs when two adjacent sibling 

leaf nodes or non-leaf nodes become under-loaded. A leaf node merge consists of 

combining the local ranges of two leaf nodes     and     into a single local range that 

will be associated with the merged leaf node while the other leaf node becomes empty 

and is released. The parent node, i.e. the node located at the next higher level in the b+ 

tree and having the leaf nodes as children has also to merge its corresponding entries 

into a single one. Therefore, the number of entries comprised in the parent node is 

reduced and the node may become under-loaded if the number of its entries becomes 

less than ceiling (p/2). Hence, a non-leaf node merge operation may be performed 

similarly to the leaf node merge operation. The same procedure is applied to the parent 

nodes as necessary. 

 

Fig. 2.3.5.2.a and Fig. 2.3.5.2.b illustrated below show an example of a b-tree before 

and after the merging of nodes X1 and X2. 

 

 

 

Fig. 2.3.5.2.a: Before the merge operation of node X1 and X2 into X1 
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The merge operation can be seen as the inverse of the split operation. The entries of 

node X1 and X2, i.e. [-∞, 19] and [19, 70], are merged into one entry [-∞, 70] into node 

X1. All the child nodes associated with X2 are now associated with node X1 

accordingly. Node X2 is thus released. Additionally, the two entries of the parent node, 

which is the root, who were associated with the node X1 and X2, i.e. [-∞, 19] and  

[19, 70], are also merged into one single entry [-∞, 70] and the number of entries 

contained in the root is reduced to 2. 

 

Fig. 2.3.5.2.b: After the merge operation of node X1 and X2 into X1 

 

However, in practical communication systems, b+ trees usually have much bigger 

orders. In fact, a practical b+ tree system can hold millions or billions of nodes; the 

number of traversed nodes to reach a child node from the root, i.e. the depth of the tree, 

may be changed when update operations are performed. Typically, adding a large 

enough number of data elements will slightly increase the depth while deleting a large 

enough number of data elements will slightly decrease the depth. This ensures that the 

b-tree is maintained optimal for the number of nodes it contains. 
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3. Decentralized b-tree 

 

3.1 Motivation 

When a huge number of data records are indexed, for the sake of distributing the 

storage and access load, the data-structure is distributed on a large number of 

computers called peers. By saying distributed, we mean that the b-tree data structure 

will be dispersed over multiple interconnected peers, where the basic operations on the 

data structure such as search, insert, delete and load-balance are collaboratively 

performed. Typically, distributed systems tend to be fairly centralized; the client/server 

paradigm [17] can be used where the b+ tree is implemented on one peer (the server 

and all search and update operations are routed through this peer), and the storage 

devices are distributed among other interconnected peers (the clients). In this case, the 

system management resides within one administrative hub. We call this architecture a 

centralized distributed b+ tree. 

The figure below illustrates an example of a centralized distributed b+ tree structure. 

The server is identified as an acting agent for all communications and must be a high 

capacity, high speed computer with a large hard disk capacity. 

 

Fig. 3.1.  Centralized distributed b+ tree structure 
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By contrast to the above centralized b-tree structure, a peer-to-peer network [12] is a 

decentralized distributed network in which storage devices are not all attached to a 

common hub, it may be dispersed over a network of interconnected peers where the 

system management is symmetrically distributed among all the peers. Such 

decentralized architecture insures that the systems control is cooperatively maintained 

by all the peers, unlike the centralized architecture which consists of a single controller 

or master-process in the system. In contrast to the traditional centralized approach, a 

peer-to-peer system is fully decentralized system in which each peer acts as both the 

client and the server. Peer-to-peer systems are found to be more scalable, robust and 

suitable for many applications. The term P2P is used to refer to Peer-to-peer systems. 

To distinguish between tree-nodes and processing nodes in the distributed b+ tree, we 

denote the latter as peers, while the term node refers to tree-nodes. 
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3.2 Overview of strong-consistency b+ tree models 

 

An intuitive method for distributing a b+ tree within a P2P system is node-wise 

distribution that consists of placing each tree-node on a distinct peer. Figure 3.2.1 

shows an example of a b-tree that is node-wise distributed among peers. Nodes may be 

associated randomly with the peers or according to some data placement policy. For 

example, larger peers may be associated with the high-level nodes where higher 

communication traffic is expected. 

 

 

Fig. 3.2.1.  Node-wise decentralized distributed b+ tree structure 

 

 

 

 

Another distribution of the b+ tree structure allocates more than one node to each peer 

and larger peers may get more nodes than others. The scalable distributed b+ tree 

proposed by Aguilera et al. [3] and the tablet hierarchy in the internal representation of 

Google's BigTable [6] structure use such representations. Such distributed b+ tree 

comprises a set of peers and each peer is allocated more than one tree node. The 

updates of the tree-nodes are spread across multiple peers instead of a single one. For 

example, an Insert operation may have to split a b+ tree node, which requires modifying 

the node, stored on one peer, and its parent, stored possibly on a different peer. 
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The scalable distributed b+ tree and the BigTable structures may be illustrated as 

follows: 

 

 

Fig. 3.2.2.  Scalable distributed b+ tree and the BigTable structures 

 

 

Although this allows the update algorithms on the structure for data insertion/deletion to 

be similar to the centralized version introduced in Section 3.1, the peers holding the root 

or the higher level tree-nodes get overburdened with search traffic. A typical solution to 

this problem, used in both [3] and [6], is caching or replicating the higher level nodes of 

the tree in the user or client computers, such that traversing higher level nodes can be 

avoided. An example of a duplicated distributed b+ tree structure is illustrated below: 
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Fig. 3.2.3.  Duplicated distributed b+ tree structure 

 

 

However, this involves additional overhead for maintaining consistency among the 

replicas, and may not be suitable for highly dynamic data sets. 

 

An alternative distribution of the tree structure is to replicate the higher level tree nodes 

in proportion to their usage. So, instead of assigning the responsibility of one more tree 

nodes to one peer, one branch of the tree, i.e. the path from the root to a leaf node, is 

assigned to one peer as described in [1], and hence, the workload due to traversal 

operations is equally distributed among the peers. Thus, each peer is composed of 

multiple levels that are equivalent to multiple nodes of the classical b+ tree. The lowest 

level describes the local range of the peer in where the data is stored, similarly to a leaf 

node in the b+ tree structure. This way, the responsibility of each peer is prearranged 

symmetrically and the workload due to search and update operations on the tree 

structure is equally distributed among the peers.  
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We call such structure a consistent decentralized b+ tree. An example of the consistent 

decentralized b+ tree structure is illustrated below: 

 

 

Fig. 3.2.4.  Example of assigning one branch to one peer in a consistent decentralized 

b+ tree 

 

 

3.3 System model of “consistent decentralized b+ trees” 

 

In order to represent a branch of the tree, each peer i is composed of multiple levels in 

contrary to one single tree-node in node-wise b+ tree structure introduced in Section 

2.1.    
  refers to the routing table of a tree-node of the branch, at level l of the original 

b+ tree structure, that belongs to peer i. Notice that these entries may point to the local 

peer if the range of the entry includes the range of a node at the next-lower level within 

the same peer i.  
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Such range is called local view of the peer in a given level, and gives more information 

on the local range the peer holds among its responsibility, as we go down in each of the 

branches of the b-tree data structure. The lowest level      
  corresponds to a leaf node 

of the original distributed b+ tree, and stores the set of keys and data in the local range 

delegated to the branch of peer i. A back-pointer table is also required for updates: 

Each non-leaf node    
  maintains a back-pointer table    

  describing all its parent 

nodes    
    pointing to node    

  . Fig.3.3 represents a consistent decentralized 

implementation of peer a in Fig. 2.1. 

 

Fig. 3.3. View of the tree from peer a and its corresponding routing table 
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Fig.3.4 illustrates the consistent decentralized b+ tree of Fig. 2.1. 

Fig.3.4. Consistent decentralized b+ tree of Fig. 2.1. 
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assume a perfect successiveness of the entries comprised in each non-leaf node. The 

root node of the b+ tree describes the universe of key values denoted U. 

 

 Additionally, we denote the union of all the ranges of a non-leaf node    
   by 

         
   .      refers to the local range in the  leaf node of peer  i. We assume that 

each child node    
   in the tree knows its parent nodes p by means of a back-pointer 

table    
 . Search and update operations can be initiated from any peer.  We assume 

also a reliable, asynchronous communication system for exchanging messages 

between the different peers. We also assume that peers do not fail. Finally, the b+ tree 

model is considered to be a complete network model, where any peer is able to send 

messages to any other peer as long as the address of that peer is known. 

 

3.5 Search in the consistent decentralized B-tree 

3.5.1 Key Search 

 

The search for a given key in the decentralized b+ tree is essentially the same as 

described in Chapter 2. The operation consists of exploring the tree from the top, 

starting from the peer initiating the search operation until reaching the peer k that holds 

the target key in its local range at    
 . The main difference is that pointers point to 

peers rather than tree-nodes. Fig. 3.5.1 describes step by step the search for the target 

key 100 and initiated by peer A. At each step of the search operation, the level of 

interest decreases by one. Notice that the back-pointer table described by the right-side 

box in each routing table is not needed for the search operations. 
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Fig. 3.5.1. Search for the key 100 initiated by peer a 

3.5.2 Range Search 

The search for a given range in the decentralized b+ tree is basically the same as 

described in Chapter 2. Fig. 3.5.2 describes step by step the search for the target range 

[90, 100) initiated by peer A. The back-pointer table is also not needed for range search 

operations. 
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Fig. 3.5.2. Search for the range [90, 100) initiated by  peer a 
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3.6 Updates in a consistent decentralized b-tree 

 

In the decentralized distributed b+ tree introduced in Section 3.3, each peer maintains a 

branch of the tree, which results in duplication of the non-leaf nodes where each non-

leaf node is expected to maintain a partial state of the distributed b+ tree. Since the 

local ranges comprised in the leaf nodes are not replicated among peers, Split/merge 

operations for leaf nodes remain simple. However, higher-level nodes require the 

updates to be coordinated by one master peer so that the state maintained by all 

involved nodes remain always consistent with one another.   In the worst case, when 

the state of the root is changed, the update needs to be atomically propagated to all 

peers. Maintaining strong-consistency among the replicated states of the distributed b+ 

tree has been found problematic due to the huge overhead of such large-scale atomic 

updates [18]. We introduce the term transaction [18] which defines an atomic operation 

performed by a given peer in a P2P network. In fact, each transaction comprises a unit 

of work performed within the P2P network and treated by a given peer in a coherent and 

reliable way independent of other transactions. The peers use transactions to perform 

search and update operations atomically, without the assistance, interference or 

oversight of a central authority and each search or update operation is considered a 

single transaction. 
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4. Decentralized b+ trees with weak-consistency 

 

4.1 Weak-consistency invariants 

We consider three required constraints that are necessary for correct routing operations 

in the data structure where the primitive properties of the consistent distributed b+ tree 

may be violated when the peers are updated, even though, the search is still performed 

correctly in collaboration between the peers. 

The weak-consistency constraints [1] are defined as follows:  

 Invariant of universe AU: Any peer should be able to initiate the search operation, 

so every peer i should maintain a description of the universe of key values U at 

the highest level m of its routing table. 

             
 ) = U 

 Invariant of navigability AN: If any <r,j> is in    
 , then the range r must be 

included in          
   ). 

                  
                 

     

 Invariant of disjoint local range ALR: The local ranges must be mutually exclusive 

among all peers.  

                  
        

      

 

 

 

 



41 
 

We believe that there no need to maintain the dependency of the replicated states 

within one global state of the distributed b+ tree [1]. Indeed, each replicated state of a 

given non-leaf node can be updated atomically by means of separate transactions [18] 

independently of the other replicated states among other nodes. Since every non-leaf 

node    
  maintains a back-pointer table describing its parent nodes    

    pointing to 

node    
  at the next lower level, each non-leaf node maintains a partial view of the tree 

and may update its sibling nodes surrounded by its partial view atomically until the 

updates are propagated to the higher levels nodes. In fact, the cascading split and 

cascading merge operations from the leaf nodes to the higher level nodes, i.e. leaf level 

split or merges triggering splits or mergers in successive higher levels, can be treated 

as separate transactions by the nodes at each level. The idea of using atomic 

transactions among nodes that are independent of the transactions performed by other 

nodes of the same peer or of different peers, is an alternative to   the consistent 

decentralized b+ tree where the transactional updates of the tree-nodes are only 

performed by a peer itself, which results on a huge overhead due to the replicated state 

among different nodes at the same level of the distributed b+ tree.  Such approach 

involves a perfect independence among the nodes and a replicated state update 

occurring in a one of the non-leaf nodes does not require the change of all the 

replicated states among other peers. This criterion allows different peers to have 

considerably different view of the b+ tree but still perform the search operations 

correctly. For instance, when the state of the root of a given peer is changed, the update 

does not need to be propagated to all peers but only the corresponding peer is locally 

updated. Hence, the different peers maintain different views of the root in the distributed 

decentralized b-tree. 
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4.2 Split and merge operations with weak-consistency 

The following section describes how the update operations are collaboratively 

performed by nodes in the distributed b+ tree structure under the weak-consistency 

constraints, as introduced in [1]. The split and merge algorithms are triggered 

independently by any leaf or non-leaf node and each update is treated as a separate 

transaction. Therefore, the updates may be executed in parallel if the corresponding 

transactions are independent. To ensure correctness in the presence of concurrent 

updates in real time systems, some concurrency control mechanism is required for each 

update. For instance, to allow a higher degree of parallelism, version number based 

optimistic transaction protocols [9] may be used. The method consists of maintaining a 

transaction number for the state of each updated entry. If any of the entries is being 

updated, the atomic operation is aborted and delayed to a later time. If not, the atomic 

operation is executed by the corresponding node and the version number is 

incremented once the atomic operation is achieved. 

 

Here we define the atomic split and merge update operations for leaf level and non-leaf 

level separately. These algorithms assumes that the three weak-consistency invariants 

AU, AN and ALR introduced in Section 4.1 are satisfied before and after each update 

operation and they assure that the invariants hold afterwards. 
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4.2.1. Split leaf node   

Alg.4.2.1 is executed when a peer i wants to offload some data elements from its local 

range    
  held by its leaf node    

  to a new introduced peer j. First,     is split into 

two disjoint local ranges      and     .    
  preserves     while the set of keys and 

data in    are delegated to peer j. Second, all the parent nodes of    
  at the next 

higher level, and maintained by the back-pointer table    
  need to be updated as    

  

looses part of      Each node p back-pointed by    
 , splits the entry comprising the  

offloaded range in    
  into two disjoint entries so that the additional entry points to the 

new peer j. Notice that     
  may include i if    

   has an entry that is pointing to    
  

.Finally, the back-pointer table     
 is copied to    

  and  the top-most node    
  is also 

copied to    
 . Mid-levels of     may remain empty. 

The leaf node split algorithm of [1] is presented below: 

 

Algorithm 4.2.1 SplitLeafNode(i) 

1: Initiator: processor i 

2: Condition    
  is overloaded in terms of storage or access load 

3: Readset = {       
 ,    

 ,         
  ,    

 } 

4: Writeset = {       
 ,         

  ,    
 ,        

      
 ,    

          
  ,    

   } 

5: Action: 

6: Partition    
  into 2 disjoint sets of keys D1 and D2 and    

  into 2 disjoint ranges     and   , 

accordingly 

7: find 1 new peer j 

8:    
  <- D1 ,    

 <-     

9:    
  <- D2 ,    

 <-     

10 :             
  do 

11:  there must exist <x,i>       
  

12:                      

13:      
  <-    

 \<x,i>   {<x      , i>, <x      , j>} 
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14:     
  <-    

       

15:         

16:              then    
  <-     

       end if 

17:  end for 

18:    
  <-    

 , where m is the highest level of     

19:                 
  ,    

    <-    
       } 

Alg. 4.2.1. Leaf node split algorithm as introduced in [1] 

 

 

 

 

4.2.2 Split non-leaf node 

Alg.4.2.2 is executed when a peer i wants to offload some entries from its non-leaf node 

   
 , at level l > 0. Non-leaf node splits may be initiated by an over-loaded leaf node. 

The first step consists of finding an existing peer j with a routing table at the same level 

   
 , that either contains some entries covering some common range with    

  or has 

some space to take some entries from    
 . Such operation is described as a transfer of 

responsibility and is further discussed in Chapter 6. Once an available peer j is found, 

the offloaded entries are transferred from    
  to    

  and each node    
    of the peer k 

that is associated with the transferred ranges at a lower level is updated so that peer k 

is added to the back-pointer table    
   .  In addition, each node p back-pointed by    

 , 

splits the entry comprising the  off-loaded range in    
    into two disjoint entries so that 

the additional entry points to the new peer j. The back-pointer table    
 is also copied to 

   
  accordingly. Finally, if the top-most level of    

  is split, one additional node    
    

is added to the routing table of peer i. in order to hold a pointer to the transferred 

ranges, such that the universe of key values U is maintained. 
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Algorithm 4.2.2 SplitNonLeafNode(i,l) 

1: Initiator: processor i 

2: Condition            
   has too many entries 

3: Readset = {   
 ,   

 ,     
 ,          

  ,     
              

  ,     
    } 

4: Writeset = {   
 ,   

 ,     
 ,          

  ,     
              

  ,     
    } 

5: Action: 

6 : find  j | <r,j>      
     j      

    s.t    
  is empty or    

  has some space for at least two entries or   

   
   has some overlap Ee with    

 , multiple such j (say, jk  may be chosen). 

7 : Partition    
  into two disjoint subsets   

   and   
  and partition          

   into disjoint ranges    

        
   and   

  accordingly.   
  may be partitioned into multiple sub-ranges    

  

8:        

9 :      
  <-     

  U    
  

10:     
  <-    

  \    
  

11:                  
       

    <-    
         }            

12: end for 

13:        
  do 

14:  There must exist <x,i>      
    

15:  If         
       then 

16:      
    <-    

                       
             

          

17:      
  <-    

       } 

18:  end if    

19:           
      then    

  <-    
         } end if 

20: end for 

21 : if    
  is the highest level in     then 

22      
    <-      

              
          ,    

  <-    
       } 

23 end if 

Alg. 4.2.2. Non-leaf node split algorithm as introduced in [1] 

 

 



46 
 

Figure Fig. 4.2 identical to Fig.3 from Section 3.3 of [1] shows how a weakly-consistent 

b+ tree structure may grow with asynchronous leaf node and non-leaf node split 

operations. 

 

 

Fig. 4.2. Evolution of a weak-consistent b+ tree with asynchronous updates 

 

Initially, Peer A is introduced and its routing table     is created and comprises only a 

leaf node    
  (step1).This leaf node holds a local range     described by the universe 

of key values U = (-∞, +∞). After some key data insertions,     may become over-

loaded and a leaf node split operation is performed in      by off-loading a portion of 

     to a new peer B .    
  is updated and then copied to    

  (step2). Similarly, after 

some data insertions in peer B,     may become over-loaded and    
  is split into    

  

and   
 . The back-pointer nodes    

 and    
  are updated by adding an entry that 
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contains the off-loaded range associated with a pointer to the new peer C. The back-

pointer tables   
 ,    

  and    
  are updated accordingly (step3). Suppose now that the 

non-leaf node    
  has too many entries and wants to offload a portion of its entries. A 

non lead node split operation is thus performed by    
  by choosing peer B to take 

responsibility of the transferred entry <(-∞, 15], A>. Since the top-most level of    
  is 

split, one additional node    
  is added to    . This node is composed of two entries, 

the first one holds its self-range from     
  , while the second entry holds the transferred 

entry (step4), this way, the universe of key values U is maintained in the top-most level 

   
 . Similarly to step1 and 2, step 5 consists of splitting the leaf node of peer C while 

steps 6 and 7 consist of non-leaf node split in    
  and   

 . 

We can see from the above example that the view of the b+ tree remains identical for all 

three peers A, B and C in steps 1, 2 and 3, while from step 4 onwards, different peers 

may have different views of the b+ tree. Indeed, the global view of the b+ tree structure 

under the weak-consistency constraints may no longer remain a single connected tree. 

Rather, the view may be distributed among several disconnected segments of the tree. 

Nevertheless, each peer maintains sufficient information for correct routing and the 

search operation is performed properly and can be initiated from any peer in the 

distributed b+ tree. 
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4.2.3 Merge of two leaf nodes 

Algorithm 4.2.3 is executed when some data deletions cause a leaf node    
  of a peer i 

to become under-loaded. Therefore, peer i performs a leaf node merge operation in    
   

and combines its local range    
 with the local range of another peer    

 .  A suitable 

partner j for the merged can be found from the non-leaf node at the next higher level 

   
  , where p is held by the back-pointer table    

 . If    
  is pointing to j for some other 

range y, then after the merged, the two entries <x, i> and <y,j> can be merged into one 

single entry <x U y, j>  if the ranges are consecutive. In addition, all the higher level 

nodes of    
  are merged with the corresponding nodes    

  so that the information 

maintained by peer i for correct routing is not lost. Finally, peer i is released. 

 

 

Algorithm 4.2.3 MergreLeafNode(i) 

1: Initiator: processor i 

2: Condition    
  is under-loaded in terms of storage or access load 

3: Readset = {       
 ,    

 ,         
  ,    

 } 

4: Writeset = {       
 ,         

  ,    
 ,        

      
 } 

5: Action:  

6: select j |                  
       

       
   

7:    
  <-    

       
         

  <-    
       

   

8:         
           

        
  

9:               
     replace i by j  in    

     and merge node    
    as necessary if it contains too few 

entries 

10: release processor i 

 

Alg. 4.2.3. Leaf node merge algorithm introduced in [1] 
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4.2.4 Merge of two non-leaf nodes 

Algorithm 4.2.4 is executed when a peer i wants to merge some entries from its non-leaf 

node    
 , at level l > 0, with a non-leaf node of another peer j at the same level    

  . 

Such a merger may be initiated by an under-loaded leaf-node. First, peer i searches for 

an available peer j and combines its entries in     
 with the other entries in    

 at the 

same level. Similarly to the leaf node merge operation, a suitable partner j for the 

merged entries can be found from the non-leaf node at the next higher level    
    , 

where p is contained in the back-pointer table    
 . If    

    is pointing to j for some 

other range y, then after the merged, the two entries <x, i> and <y,j> can be merged 

into one single entry <x U y, j> if the ranges are consecutive. The merged entry is thus 

removed from    
  . Finally, if    

    is the top-most level node and contains only one 

entry after the merger, that level may potentially be eliminated and the number of levels 

is reduced. 

 

Algorithm 4.2.4 MergreNonLeafNode(i.l) 

1: Initiator: processor  i 

2: Condition    
  is under-loaded in terms of storage or access load 

3: Readset = {    
 ,  ,         

  ,    
   } 

4: Writeset = {    
 ,         

  ,    
   ,    

      
           

  ,    
    

5: Action:  

6: select j |                  
       

       
     

7:    
  <-    

       
                         

  as necessary 

8: if l is not the highest level of     then 

9:     
  <-   

10 :             
     replace i by j  in    

     and merge node    
    as necessary 

11: end if 

12: If for any       
      

    is the highest level of     and contains only one entry pointing to p 

then 

13:  Delete     
    and remove p from    
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14: end if 

15 :    
  <-   

Alg. 4.2.4. Non-leaf node merge algorithm as introduced in [1] 

 
 
 
 

4.3 Challenges 
 
 

The split and merge algorithms represented above and copied from [1] present some 

open problems. In fact, the major challenge of the split and merge algorithms is to find 

an existing peer j, whose routing table, at the same level, contains some entries 

covering some common range with peer i or have enough free space to hold the given 

range held by peer i. The algorithm presented in [1] does not provide any procedure for 

finding such peer j. We have developed such procedure (see section 6.1) called transfer 

of responsibility and have shown through our simulation studies that it is possible to find 

an existing peer that can be responsible for a given range at a given level of the 

distributed b+ tree. These procedures partially or fully explore some neighboring peers 

of the distributed b+ tree following a predefined convention. 

 

We also found that we have to maintain a tradeoff regarding the transferred entries so 

that they remain balanced among the distributed b+ tree. Indeed, when a non-leaf node 

split operation is performed, the number of entries of the split node is reduced and part 

of the range is suppressed from the original node. If such reduction is performed 

randomly among the peers, we may face a situation where the common ranges are 

suppressed from many nodes and the probability of finding an existing peer j, that 

already contains some entries covering such common ranges with peer i becomes low. 

If no such peer is found, there is no peer that can be responsible for holding the 

requested ranges and the non-leaf split node becomes unfeasible. A solution to this 

problem is also described in Section 6.3. 
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5. Studying the validity of a the distributed b+ tree with weak-

consistency 

 

One goal of this work is to prove that the b+ tree structure allows for consistent search 

operations when the weak-consistency invariants AU, AN and ALR of section 4.1 are 

maintained. In this chapter, we describe how we have established such a proof by using 

a specification language that can generate instances of models and simulate the 

execution of operations defined as part of the model. The model specification is 

described in the following sub-sections. 

 

 

5.1 Purpose of Modeling the Decentralized B+ Tree with weak-

consistency 

 

The assumptions described by the  weak-consistency invariants introduced in Section 

4.1 let us think that if these assumptions are true, the search operations would properly 

work in practice. I chose to model the distributed b+ tree structure using the Alloy 

modeling language[10] and the goal was to explore the validity of weak-consistency 

using this modeling language. This goal may be achieved by defining  the 

characteristics and properties of the distributed b+ tree and then checking the validity of 

some operations on the b-tree structure under these assumptions. Such validation is 

fairly straightforward to analyze  using the Alloy analyzer. The Alloy analyzer was 

specifically developed to support so-called "lightweight formal methods". As such, it is 

intended to provide fully automated analysis, in contrast to the interactive theorem 

proving techniques commonly used with logic-based specification languages similar to 

Alloy. 

In the following subsections, the Alloy language is introduced, together with the Alloy 

model of our b+ tree structure with weak-consistency. Then we discuss the results 

produced by the Alloy analyzer. 
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5.2 Introduction to the Alloy specification language 

 

Alloy is a specification language that was developed by a team led by Daniel Jackson at 

MIT since 1997. Its aim is to check properties about a system model and to describe 

formally the components of a given system and the relationships between them. 

Influenced by the Z notation, Alloy is an object-based language that is based on set 

theory and first-order logic. By saying first order logic, we mean that it consists of a 

structural modeling language based on declarative statements that are unaffected by 

their order. For instance, two successive statements have no priority and the statements 

are completely independent from one another when Alloy checks for a given model 

specification.  

 

Given the specification of a model in terms of object classes and relationships, the Alloy 

analyzer generates a several instance models consistent with the given model, and 

verifies for each instance model that certain given desirable assertions are satisfied. 

This is a kind of model checking.  Alloy differs from many specification languages 

designed for model-checking in that it is declarative rather that imperative, and permits 

the definition of infinite models. The Alloy analyzer is designed to perform finite scope 

checks even on infinite models. More details on the Alloy specification language may be 

found in [10]. 

 

The structures in the Alloy models are basically built from atoms and relations, 

corresponding to the basic entities and the relations between them. The Alloy 

specification language is described by [10] as follows: 

 

Atoms 

 

An atom is a primitive entity that is:  

Indivisible: It cannot be partitioned into smaller parts. 

Immutable: its properties do not change over time. 

Un-interpreted: It does not have any built-in properties.  
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In order to build entities that are divisible, mutable or interpreted, relations are 

introduced to capture these properties as an additional structure. 

 

Relations 

 

A relation is a structure that relates atoms. It consists of a set of tuples, each tuple being 

a sequence of atoms. A relation can be represented as a table, in which each entry is 

an atom. The order of the columns matters, but not the order of the rows. A relation can 

have any number of rows, called its size. The number of columns is called the arity of 

the relation, and must be one or more. Relations with arity one, two and three are said 

to be unary, binary and ternary, successively. A relation of arity of more than three is 

called a multi-relation. 

For instance, a set of names and a set of addresses, each of size 3 may be represented 

by: 

 

Name = {(N0), (N1), (N2)} 

Address = {(D0), (D1), (D2)} 

 

We can design a model in which there is only one address per name as a binary 

relation called location that relates names to addresses as follows:  

location = {(N0, D0), (N1, D1), (N2, D2)} 

 

 

Predicates  

 

Predicates are parameterized constraints, i.e. conditions that may be true or false and 

can be used to analyze a model with constraints that may not always hold. The 

condition stated in a predicate describes the properties of a given system and are 

evaluated by the model checker according to some input parameters and for each 

parameter is associated a domain as an output.  
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For each of these parameters, if the input satisfies all the model properties described by 

the conditions that are listed in the body, then the predicate evaluates to true. Otherwise 

it evaluates to false. 

For instance, a predicate having two parameters and 3 conditions is declared as 

follows: 

 

pred name [parameter1: domain1, parameter2: domain2,…, parameterN: domainN]  

{ 

 condition1 

 condition2 

condition3 

} 

 

 

Facts  

 

Predicates that are assumed to always hold are called facts. A model can have any 

number of facts, each a paragraph of its own labeled by the keyword fact, and 

consisting of a collection of constraints that defines the properties of a given system. 

 

 

Signatures 

 

A signature introduces a set of atoms. For instance, the declaration Sig A {} introduces 

a set named A. Each set can also be introduced as a subset of another set. Thus,  

Sig A1 {} extends A introduces a set named A1 that is a subset of A. Such signature is 

declared as independently of any other is a top-level signature.  
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The extensions of a signature are mutually disjoint. Additionally, an abstract signature 

has no elements except those belonging to its extensions.  A signature declaration is 

expressed as  

Sig {relations}{facts} where relations introduces the interactions of this set with other 

sets and facts introduces the facts related to this set of objects. The relations between 

objects are declared in Alloy as a field of signatures where each field is described by a 

domain as an input signature and a range as an output signature. For instance, we 

consider two signatures Sig A {} and Sig B {}. The binary relation r: A -> B introduces a 

constraint whose domain is A and whose range is given by B, declared as a field of 

signatures Sig A {r: B}. 

 

 

Assertions  

Assertions are predicates. The validity of each assertion is verified by the Alloy analyzer 

for each generated instance model, based on the given model specification and 

specifically, based on the facts that are included in this specification.  An assertion is 

intended to follow from the stated facts of the model. If any assertion does not follow 

from these facts for a given model instance, then this model instance represents a 

counter-example which shows that the assertion is not necessarily satisfied. In the case 

that no counter-example is found, the corresponding assertion may be valid. 
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5.3 Modeling the decentralized b-tree 

 

5.3.1 System model 

In order to validate the properties of the b+ tree with weak-consistency, we modeled the 

structure by defining the routing tables, the nodes and the ranges as signatures that 

interact following some restrictions that are described by the facts of the model. Then, 

some assertions are introduced and used by the Alloy analyzer to check their validity.  

In particular the consistency invariants AU, AN  and ALR, introduced in Section 4.1, are 

introduced as assertions to be verified. In addition, a search predicate is defined in the 

end to illustrate the search operation for a given key value that is initiated by one of the 

existing peers in the distributed b+ tree. The distributed b+ tree system model that is 

built by the Alloy specification language is described in this section. Notice that each 

statement of the algorithm is supported by useful comment, described by the symbol “//” 

as in the most popular programming language such as in C and Java, to explain the 

meaning of its following statement. 

 

Signatures 

 

The following Alloy statements describe the different signatures, i.e. classes that are 

used to model the distributed b+ tree structure. 

 

// main structure of the model 

//each routing table, called RT, is composed of some nodes, called Node 

some sig RT {nodes: some Node} 

//some nodes have some entries called Entry and belongs to a level 

some sig Node{entries: some Entry ,levels: one Level} 
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some sig Level {} 

//some entries have some ranges called Range and points to one or zero node 

some sig Entry{range: some Range, pointer: lone Node} 

//some nodes are leaf nodes and called Leaf 

some sig Leaf in Node{} 

//Ranges are represented by a set of key values from A to F 

abstract sig Range{} 

//all key values are mutually disjoint 

one sig A,B,C,D,E,F extends Range{} 

Alg. 5.3.1.1. The signatures, i.e. classes used to represent the b+ tree structure  

 

The above statements describe a set of routing tables, called RT. This set is related to a 

set of nodes called Node by the relation nodes. Each node itself is related to a set of 

entries called Entry by the relation entries and associated with one of the ordered levels. 

Each entry is related by the range relation to a set of key values denoted by Range and 

has a pointer that relates it to lone node, i.e. one or zero node. The set of leaf nodes, 

called Leaf, is represented as a partition of nodes, i.e. some nodes can be leafs while 

other nodes are not. 
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Ordering 

The routing table, the levels and the search states are ordered. The model begins with 

open statements which impose an ordering on the set of atoms used to express the 

routing tables (RT), the levels (Level) and the search states (State) as follows: 

 

// Routing tables, levels and search states are ordered 

//ordering the routing tables 

open util/ordering[RT] as ord1 

//ordering the levels 

open util/ordering[Level] as ord2 

 

//ordering the search states 

open util/ordering[Search_State] as ord3 

Alg. 5.3.1.2. Statements for ordering the routing tables, the levels and the search states 

 

In fact, we can use the ordering Alloy module util/ordering by adding the above lines to 

the beginning of the model to construct a linear ordering and refer to properties of that 

ordering. We parameterize a given set of atoms so that we can call order comparison 

operations on elements of that set. In the above example, the routing table, the levels 

and the states of  the search operation (see next section), are ordered and denoted 

ord1, or2 and ord3 consecutively. The util/ordering module provides few useful functions 

that we can use, including first, next and last: first returns the first atom in the linear 

ordering, last returns the last atom in the linear ordering while next maps each atom 

(except the last atom) to its succeeding atom. 
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Facts 

Once the main structure of the distributed b+ tree is defined, we then need to organize 

the interactions between the different objects. Indeed, facts are used as an additional 

structure to define how these objects are related to each other and what kind of 

restrictions are needed to be able to correctly model our distributed b+ tree system.  

The complete list of restrictions is given below: 

 

 

 
fact node_Transition  

{ 
//every node is associated with a routing table by the relation nodes  
all n:Node|one r:RT | n in r.nodes 
} 

 
fact leaf_nodes  

{ 
//if two leaf nodes are different, their corresponding routing tables are also 
//different, contrary to the non leaf nodes since a routing table can have different 
instances of non-leaf nodes each one in a different level. 
all l1,l2:Leaf | l1 !=l2 => nodes.l1 != nodes.l2 
// the number of leaf levels is equal to the number of Routing tables 
// i.e each routing table has a unique leaf node 
#Leaf = #RT 
} 

 
fact level_Ordering  

{ 
// if two different nodes belongs to the same routing table cannot be at the same 
//level 
all r:RT,n1,n2:r.nodes | n1 != n2 => n1.levels != n2.levels 
//the lowest ordered node of each Routing table is in the leaf level 
all n:Node, l:Leaf | l in n => ord2/first = n.levels 
//more than one level must exist for each Routing Table 
all r:RT | #{r.nodes} > 1 
//no empty levels between the highest and the lowest level. Since levels are 
ordered, the system must generate instances of Level that may be used by the 
routing table. Otherwise, some internal levels may not exist. 
all r:RT, l:r.nodes.levels, l':^ord2/next[l], l'':^ord2/next[l'] 

{ 
l'' in r.nodes.levels => l' in r.nodes.levels 
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} 
} 
 

fact Range_distribution_for_Balancing 
{ 
//all the key values must be in the local range of the leaf nodes 
all r:Range| one l:Leaf | r in l.entries.range 
// two different leaf nodes cannot have the same local range (Alr) 
all l1,l2:Leaf | l1!=l2 => l1.entries.range != l2.entries.range 
//the local ranges are balanced  
//(the size of the local range in each Routing table is equal else different of 1r  

  all l1,l2:Leaf | l1 !=l2 => 
 { 
#{l1.entries.range} = #{l2.entries.range} 
or #{l1.entries.range} = #{l2.entries.range} -1 
or #{l1.entries.range} = #{l2.entries.range} +1 
} 

} 
 
fact entries_structure  

{ 
//the entry of the local range does not have a pointer 
no Leaf.entries.pointer 
//every node point to another node at a lower level 
all l:Level,l':ord2/next[l] | levels.l != none and levels.l' != none => 
{levels.l'}.entries.pointer = levels.l 
//every pointer to another node at a lower level must include its range 
//corresponds to the invariant of navigability (An) 
all n:Node-Leaf,e:n.entries, r:e.range, p:e.pointer| r in p.entries.range 
//every entry is associated with a node by the relation entries  
all e:Entry | one n:Node | e in n.entries 
// two distinct nodes have distinct entries 
all n1,n2:Node | n1 != n2 => n1.entries != n2.entries 
//two different entries of the same node cannot share the same range 
all n:Node, e1,e2:n.entries | e1 != e2 => e1.range & e2.range = none 
//describing the Universal Range in the highest level of each Routing table (Au)  

//Au1 : describing part of the universal range invariant Au 
//This statement says that the universe of key values should be described by the 
range of each node at the highest level of each routing tables. This fact statement is 
not sufficient since our model should allow to have different peers that have different 
high levels. The following statement is only applied to the highest ordered level 
instance of all the level instances that are generated. 
 
all n: Node | n.levels = ord2/last =>Range = n.entries.range 
//every entry except the entries of Leaf nodes has to point to a given node  
all e:Entry - {Leaf.entries} | e.pointer != none 
// the number of entries for each node except the Leaf nodes is greater than 1 
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all n:Node-Leaf | #n.entries >1 
//describing the universal range in the highest level of each Routing table 
//corresponds to the invariant of universe (AU) 
 
//Au2 : describing part of the universal range invariant Au 
 
//with each routing table is associated one node that comprises the set of all the 
//key values in within its entries. This fact is not sufficient since this generated 
one node can be leaf node and the search operation become inaccurate, we 
should add another fact statement to tell which node can contains the universe of 
key value and in which level (Au1 required) 
all r: RT | one n: r.nodes | Range = n.entries.range 
// for each routing table, there is always two succesives nodes  
// where the higher one contains the set of all the key values 
all r:RT, n2:r.nodes, l1,l2:r.nodes.levels { l2 = ord2/next[l1] and n2.levels = l2 => 
Range = n2.entries.range} 
 
} 

 

Alg. 5.3.2. The facts, i.e. restrictions, used to represent the b+ tree structure  

The above facts are interpreted as follows: the first set of facts, called node_transition 

enforces that each node is associated with some routing tables and that one node 

instance cannot belong to more than one routing table at the same time. This fact is 

used to ensure that for each routing table, a number of nodes belonging to different 

levels are associated with it. The second set of facts is called leaf_nodes and states that 

if two leaf nodes are different, their corresponding routing tables are also different. It 

states also that the number of leaf levels is equal to the number of routing tables, i.e 

each routing table has a unique leaf node. The next set of facts is called level_Ordering 

and is used to order the levels of the routing table as following: two nodes belongings to 

the same routing table have to correspond to two different levels, and that the leaf node 

of each routing table corresponds to the node associated with the first ordered level. 

Also, more than one level must exist for each routing table for the routing to work 

properly. Another fact that is important to define is that for any two existing levels, all in-

between levels between these two levels must also exist so that the level ordering 

principles used by the util/ordering module are not violated.  
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The last set of facts describes the entries structure as follows: The entry of the local 

range does not have a pointer, every node points to another node at the next lower level 

must comprise the latter range. Also, two different entries of the same node cannot 

have the same range, every entry except the entries of leaf nodes has to point to a 

given node and the number of entries for each node except the leaf nodes is greater 

than 1. The last two statements say that with each routing table is associated one node 

that comprises the universe of key values U within its entries and that for each routing 

table, there is always two succeeding nodes where the higher one contains the universe 

of key values U. 

 

 

Key values 

Since Alloy is not arithmetic and does not allow integer representation of key values, 

key values are represented as a set of ranges, i.e. instances of the signature Range 

where each elementary range describes a key value identified by a letter from A to Z. 

This results in a relaxation of the consecutiveness constraint of key values so that there 

is no ordering of key values i.e. Key values are randomly allocated among the peers.  

Notice also that the maximum number of instances for each signature in Alloy is 18. 

Thus,  we may not be able to generate more than 18 letters, where each letter 

describes the local range of one peer. This implies that our b-tree model may not have 

more than 18 peers, since each peer should maintain a different letter describing its 

local range in its leaf node. 
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5.3.2 Model instance creation 

 

The Alloy analyzer generates instances of the b+ tree model by processing different 

predicates and assertion. The Alloy analyzer first produces all possible instances of the 

model with the properties defined by facts. In addition, if an assertion is processed, the 

Alloy analyzer applies the additional constraints defined in the body of the 

corresponding assertion. If these constraints are consistent with the original facts of the 

model, the Alloy analyzer states that these constraints are consistent with the original 

facts. Otherwise, a model instance is generated as a counter-example to show that the 

assertion is not necessarily satisfied. 

 

The run statement is used to instruct the Alloy analyzer to generate model instances. If 

refers to a predicate, which in many cases is a dummy predicate. Alloy must limit the 

number of instances to be generated in the run statement. The predicate example 

(below) uses 4 instance restrictions: RT, Node, Level and Entry. These instance 

restrictions are used to limit the number of instances the b+ tree model may contain. By 

giving the maximum number of instances that can be used by each of the signatures 

RT, Node, Level and Entry, the Alloy analyzer generates all the possible instances that 

correspond to this setting. 

 

 

 

 

pred example {}  
 

run example for 2 RT, 10 node, 10 level, 10 entry 

Alg. 5.3.4. Running an example of the distributed b+ tree structure with two routing 

tables 
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The model instances generated by the Alloy analyzer can be automatically displayed in 

a graphical representation. Fig. 5.3.4 shows an example of the distributed b-tree system 

having 2 routing tables, 6 entries, 4 levels, 4 nodes and 4 pointers. 

 

 

Fig. 5.3.2.1.  Example of the distributed b-tree system with 2 routing tables, 6 entries, 4 

levels, 4 nodes and 4 pointers (magic layout view). 

 

We can clearly see from the above example that two routing tables denoted by     and 

     are used, each one of them has two different nodes corresponding to different 

levels and each node comprises some entries and points towards another peer. We 

considered here only 6 key values for the universe of key values U = {A,B,C,D,E,F} but 

one can add more key values if needed. The levels are ordered and the number of 

levels has to be determined in the predicate example by means of the parameter Level, 

but not all the levels are used here. For instance, we have set to 4 the maximum 

number of levels while only 2 levels were used by the above example. Notice that level0 

corresponds to the first ordered level and is associated with leaf nodes.  
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The tab „next‟ in the Alloy analyzer menu allows us to generate another instance 

permitted under the restrictions that were introduced as facts. For the sake of clarity, we 

used the magic layout view which illustrates the distributed b+ tree model with more 

simplicity and makes the structure easier to read. We can also see from Fig 5.3.1 that 

the key values are balanced automatically with a difference of one key value between 

each two routing tables in the worst case, which is consistent with our expected results. 

Notice that in the case that the number of routing tables is higher than the number of 

key values, the predicate is inconsistent and does not generate any example since one 

of the main facts states that each routing table should have at least one key value. 

 

 

Balancing 

 

One of the design goals of the distributed b+ tree was keeping the search tree balanced 

while growing and shrinking. For this reason, it is desirable to have a similar number of 

stored key values in all leaf nodes. Thus, we introduce additional constraints, i.e. facts, 

to keep the distributed b+ tree structure balanced by having a similar number of key 

values within each peer. 

The Alloy statements used for these facts are shown below:  

 

 

// describes how the ranges are distributed for balancing 

fact Range_distribution_for_Balancing{ 

//each local range contains some distinct Ranges 

all r:Range| one L:Leaf | r in L.entries.range 

all L1,L2:Leaf | L1!=L2 => L1.entries.range != L2.entries.range 

//choose the best distribution 

//(the number of ranges in each Routing table is equal else difference of 1} 

 all L1,L2:Leaf | L1 !=L2 =>  

{ 

#{L1.entries.range} = #{L2.entries.range} 
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or #{L1.entries.range} = #{L2.entries.range} -1 

or #{L1.entries.range} = #{L2.entries.range} +1 

} 

} 

Alg. 5.3.2.4. Restrictions used to balance the distributed b-tree nodes  

 

The above constraints state that the balancing should be done systematically by 

maintaining the number of elementary key values associated with each leaf node to be 

equal. If this is not possible, the program then distributes the key values in such a way 

that only a difference of one in the number of elementary key values is allowed. The 

above figure shows an instance of the distributed b+ tree model having 6 entries, 4 

levels, 4 nodes and 4 pointers. The Alloy analyzer generates all the possible instances 

of the given model. The magic layout view can be used in the settings of the Alloy 

analyzer to clearly illustrate the system model of the distributed b+ tree structure, where 

key values are balanced and equally distributed among all the peers. Indeed, Fig. 5.3.4 

demonstrates an example where the local ranges are distributed equally among the two 

routing tables. The structure is composed of two local ranges at level 0, the first local 

range is associated with the routing table RT0, and corresponds to entry0 with 3 distinct 

ranges B, E, F, while the second local range is associated with the routing table RT1, 

and corresponds to entry4 with 3 distinct ranges A,C and D. Notice that the sum of all 

disjoint local ranges represents the universe U = {A,B,C,D,E,F}. 
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5.3.3 Search operation  

 

The search operation is possible in Alloy by distinguishing between the key values A, 

B,C etc. When performing a search operation, the user should tell the program who is 

the initiator, looking for a given key value. This can be done by using a predicate 

denoted “initiator[X]”, were “X” is the routing table that is initiating the search operation. 

For instance, I chose for the next example X as “ord1/first” which means that the first 

element of the ordered routing tables i.e.     is the initiator. In addition, one has to tell 

which key value the initiator is looking for. This can be done by calling a predicate 

“target[Y]”, were “Y” is the target key value. For instance, I have chosen for the following 

example Y as “B”, meaning that the initiator is performing a search operation for the key 

value B.  

 

Performing a search operation for a target key value is done by means of search states  

by sending a token as a message, starting at search state0, i.e. the highest level node 

of the initiating routing table, and navigating from one routing table to the next lower 

level of the same or another routing table, until the query reaches the lowest level i.e 

level 0, in the last search state, when the target key value is found. Starting from the 

initiating routing table, the token is moved from one node to another by making a state 

transition at each hop of the navigation and should reach its final destination Y given by 

target[Y]”. If the token reaches its final destination, the search operation is performed 

successfully. Otherwise, the search operation is not consistent with the stated 

properties in facts that were used to define the system model.  
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The search algorithm is defined below: 

 

 

//describing the search states 

sig Search_State {Token: one Node} 

 

//describing the initiating routing table 

pred initiator[Initiator:RT] 

{ 

//in the initial state, only the Initiator has the token 

all n:Initiator.nodes, l:n.levels, l':ord2/next[l] | levels.l' =  

none and levels.l != none => ord3/first.Token = n 

} 

 

//describing the target key value we are looking for 

pred target[Target:Range] 

 

{ 

//in the final state, the token must be in the leaf node having the corresponding 

//key value 

one n:Node | {ord3/last}.Token = n and Target in n.entries.range  

and n in levels.{ord2/first} 

// describes the state transtion i.e. how the search query navigates from a node 

to another one  

all s: Search_State, s': ord3/next[s], e:s.Token.entries  

{ 

Target in e.range and {s.Token}.levels != ord2/first => 

s'.Token in e.pointer 

else {} 

} 

} 
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// choosing search parameters (the search parameters may be changed)  

fact choosing_the_parameters  

{ 

//choosing who is the initiating routing table 

initiator[ord1/first] 

//choosing the target key value 

target[B]  

} 

 

Alg. 5.3.2.5.  Search operation algorithm for the key value B and initiated by RT0 

 

 

We generate some example visualizations of the search operation by declaring the 

predicate called “Search_for_B_Starting_at_RT0”as follows: 

 

 

 

pred Search_for_B_Starting_at_RT0{} 

run Search_for_B_Starting_at_RT0 for 2 RT, 10 Node, 10 Level, 10  

Entry, 2 Search_State expect 1 

Alg. 5.3.2.6. The predicate executing the latter search operation 

 

The predicate “Search_for_B_Starting_at_RT0” uses 4 parameters, one for the number 

of states, which must be equal or more than the number of used levels in order to 

guarantee that the token, starting at the highest level of the initiator will get to the lowest 

level of the routing table corresponding to the peer having the target key value at the 

last state. Using a small number of search states may be insufficient for the target to 

reach its final destination.  
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The other parameters used are the number of routing tables and the maximum number 

of nodes and entries that can be used by the distributed b+ tree structure. In this 

algorithm, key values are arbitrary allocated among the peers and each routing table 

has at least one key value stored in its leaf node. The parameter “Expect 1” means that 

the predicate is expected to find only one target range in its final state, i.e. the query 

stops as soon as the target key value is found. In order to have a good view of the state 

transitions during the search operation, it is suggested to make a projection over the 

states. This can be done by selecting projection over states in the tab menu of the Alloy 

analyzer. In fact, the Alloy analyzer allows projecting the models over one or more 

objects so that users can observe the instances of all related objects from the view of 

the projected object. 

Below are shown the results of the predicate “Search_for_B_Starting_at_RT0” for 2 

routing tables with a maximum of 8 levels. 
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Search State 0  
 
 
The token is in the highest level node of the initiating Routing table RT0. 

 

 

Fig. 5.3.2.2. State0 of the look up operation on the distributed b+ tree (magic layout 

view). 
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Search State 1 
 
 
The token is moved from the highest level node, i.e. level1 of the initiating routing table 

RT0,  to level0 of the routing table RT1 by following the pointer of entry0 comprising the 

key value B. The token is now in node2, which is leaf node, and has the key value B in 

its range. The target therefore has reached its final destination and the search operation 

is terminated. 

 

 

 

Fig. 5.3.2.3. State 1 of the look up operation on the distributed b+ tree (magic layout 

view). 
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Notice that one can change the maximum number of search states that can be used, 

but it is more preferable to maintain it equal to the number of levels since the query 

starts from the highest level of the initiating routing table and reaches its final state in 

the leaf node of the routing table having the target range. In the case where the number 

of chosen search states is less than the number of levels, the search operation fails and 

the token i.e. query can never reach the final state. 

 

5.4 Weak-consistency invariants 

5.4.1 Formalization 

The goal behind using the Alloy modeling language is to verify that the search operation 

is performed properly under the weak-consistency invariants AU, AN and ALR as defined 

in Section 3.7. By checking the validity of some assertions having constraints that define 

AU, AN and ALR successively, it is possible to verify whether the search operation is 

consistent with the b+ tree model with weak-consistency. 

We note that these assertions are already included as facts in the model specification 

presented in Section 5.3.. 

Invariant of universe AU 

Since any peer should be able to initiate the search operation, each peer should 

maintain a description of the universe of key values U at the highest level of its routing 

table. The assertion given below is used to verify the validity of this constraint. 

 

//1) Invariant of universe (AU) 

assert AU{ 

all r:RT | one n:r.nodes | Range in n.entries.range 

} 
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check AU for 10Assert  

5.4.1.1. Assertion to verify the universal coverage invariant 

 

 

Invariant of navigability AN 

For correct navigation of the search queries, an assertion is declared to verify that any 

range in a given entry belonging to a given node must be included in the range of the 

node it points to at the next lower level i.e. any range in a given non-leaf node can find a 

destination node having that range within its entries at a next lower level. The assertion 

given below is used to verify the validity of this invariant. 

 

//2) Invariant of navigability (AN) 

assert AN{ 

all n:Node-Leaf, r : n.entries.range | r in {range.r}.pointer.entries.range 

} 

check AN for 10 

Assert. 5.4.1.2.   Assertion to check the navigability invariant 
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Invariant of disjoint local range ALR 

This assertion is used to verify that two different leaf nodes must hold two disjoint sets 

of key values. In other words, every routing table has a unique local range so that there 

is only one destination in the final state and that a target key value cannot be found at 

the leaf nodes of two distinct routing tables. 

The following assertion is used to verify this assumption. 

//3) Invariant of disjoint local range 

 

// Every Routing Table has a uniqe Local Range 

assert ALR{ 

all L1,L2:Leaf | L1!=L2 => L1.entries.range != L2.entries.range 

} 

check ALR for 10 

 

Assert. 5.4.1.3. Assertion to check the Invariant of disjoint local range 

 

 

5.4.2 Inconsistent b+ tree structures 

The assertions described in 5.4.1 verified that for any number of routing tables, levels 

and nodes used, the search operation is performed properly and the query always 

reaches its final destination in the last state when the b+ tree model includes the weak-

consistency invariants. But what happens if one or more of these invariants is removed? 

In other terms, what happens if these constraints become too weak? Can the search 

operation still perform correctly? For the sake of investigation, we remove one of the 

facts related to the weak-consistency invariants AU and we generate the same example 

using the same empty predicate as in Section 5.3 and see what happens.  
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The following statement is removed from the facts of the b+ tree structure. 

 

// for each routing table, there is always two succesives nodes  

// where the higher one contains the set of all the key values 

all r:RT, n2:r.nodes, l1,l2:r.nodes.levels { l2 = ord2/next[l1] and n2.levels = l2 => 

Range = n2.entries.range} 

Alg. 5.4.2. Fact removed from the constraints of the b+ tree structure 

By generating some instances of the model, we obtain the following b+ tree structure: 

 

  

Fig. 5.4.2. Inconsistent b+ tree structure 
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We clearly see from the above example that the highest node at level2 of the routing 

table RT1 does not comprise the universe of key values U= {A,B.C,D,E,F} within its 

entries. The reason is that we removed the constraint stating that for each routing table, 

there are always two successive nodes where the higher one contains the set of all the 

key values U. Therefore, the Alloy analyzer generated a model where U is in a node 

other that the highest level node, i.e. in an internal node at level 1 in the model above. 

Hence, the search operation would not be possible for the key values that are not 

described in the entries of the highest level node. The search operation in the b+ tree 

structure is thus incorrect. Similarly to AU, if one of the facts describing the consistency 

invariants AN and ALR are removed, the model structure also becomes too weak and the 

distributed f b+ tree structure becomes inconsistent with search operations. 

 

 The next step would be to define a predicate of weak-consistency invariants, denoted 

WCI, and a predicate of minimally constrained architecture, denoted MCA, and finally a 

predicate describing consistent search, denoted PCS, in order to prove the following: 

 

The weak consistency invariants are sufficient to ensure consistent search:  

              

 

The weak consistency invariants are necessary to ensure consistent search:  

              

 

 

If these two statements are true, we can conclude that the weak-consistency invariants 

AU, AN  and ALR are necessary and sufficient for the correctness of search operations on 

the distributed b+ tree structure. We did not have enough time to achieve this part and 

leave it for future work. 
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5.5 Conclusions and limitations 

By using the Alloy modeling language, we were able to validate the weak-consistency 

properties that are sufficient for maintaining the b+ tree structure consistent with search 

operations. However, we did not have enough time to show that the weak consistency 

invariants are necessary to ensure consistent search and leave it for future work. 

Since Alloy is declarative, it is difficult to express the insertion and deletion of some 

ranges since all the instances of each signature have to be declared in number before 

any assertion or operation can be made. For instance, for a b+ tree structure having two 

routing tables, if we would like to insert a new routing table, we have to fix the number of 

routing tables to three before the insertion operation is started. All the facts that 

maintain the routing table structure has to be applied to the first two routing tables only 

while the third added routing table structure must be kept initially empty. However, such 

restriction is complex to apply since Alloy is declarative and hence the declared facts 

are assumed to be true for all the routing tables. This is one of the main weakness of 

the Alloy modeling language that restraint its application to validate assumptions of 

static models only. 

A second and important drawback of the Alloy modeling language is that the number of 

instances of any signature in a model instance cannot exceed 18 scopes. This is a 

serious limitation. For instance, the maximum number of instances that are allowed for 

Range signature describing the universe of key values U in the system is 18, which 

means that it is not possible to have more than 18 key values. As a consequence, we 

cannot draw a b+ tree structure with more than 18 routing tables since each routing 

table must have a unique key value in its leaf node.  However, it is usually useful to 

check the validity of a system with a higher number of instances and therefore making 

the model more realistic. 

In addition, representing the set of key values in Alloy as integer data-keys is not easy 

since Alloy does not support integers. The alternative was to describe the set of range 

as disjoint key values {A,B, C…} and deals with each key value as an elementary range 

that cannot be divided into sub-ranges. However, we were able to prove using the Alloy 

modeling language that it is possible to model the distributed b+ tree structure and 

validating the search operation under such restrictions. 
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6. Revised updates with weak-consistency 

 

6.1 Transfer of responsibility mechanisms 

 

The major challenge of the non-leaf node split and merge algorithms introduced in 

Section 4.2 is to find an existing peer j, whose routing table at the same level    
 , that 

is empty or already contains some entries covering some common range with    
  . 

Such procedure is called transfer of responsibility mechanism and consists of an 

algorithm that partially or fully explores some neighboring peers in the decentralized b+ 

tree following a predefined convention to lead to a suitable peer j. We defined two 

algorithms to perform this operation. The first one is called Ping-Pong strategy while the 

second one is called Ping-Only strategy. Both of them were implemented in our 

simulation system described in Chapter 7. 

 

6.1.1 Ping-Pong strategy 

 

Starting from a non-leaf node    
 , this strategy consists of going down to the peers 

responsible for the ranges within the entries of    
  at the next lower level (ping), then 

going backwards to the peers responsible for nodes pointing to these entries at the next 

higher level, which leads us back to different node     
  at the original level (pong).  We 

can then check if such a peer has an empty node or holds the entries the initial peer i 

decides to transfer. The Ping-Pong method is composed of two queries: The ping query 

is performed by going down using the pointers of the ranges xk in the transferring entries 

described by the tuples <xk,tk>  in    
 . The query is thus directed to all routing tables 

    
    of the traversed peers  tk. Since the goal is to find an existing peer that can 

replace peer i at the same level l, the pong query, in contrast to the ping query, consists 

of going backwards using back-pointer tables, i.e. the list of all predecessor peers p 

maintaining a routing table     
   at the next higher level and identified by the backward 

pointer table     
   .  
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Therefore, the query reaches the explored peers jk  at the same level l and we can now 

check whether the node at that level is empty or contains entries with ranges to be 

transferred from    
 . In the case that more than one suitable routing table     

  is 

available, only the first obtained peer j from all the jk is chosen and the routing table    
  

of the peer j becomes responsible for the transferred entries <xk,tk>  from    
 . 

 

This operation may be repeated at larger depths, i.e. going down more than one, as 

long as the leaf level is not reached, and then going backwards the same number of 

levels so that we can reach peers at the original level. This increases in the number of 

explored peers and raises the chance of finding a peer j that is suitable. The number of 

traversed levels to perform the Ping-Pong strategy is called the order of traversal and 

denoted by s. Starting with order 1, the strategy consists of exploring the b+ tree and 

increasing the order if the last order did not reach any suitable peer j, until a suitable 

peer j is found. Notice that all the traversed nodes in the lower levels are intermediate 

nodes and their only role is to route the Ping-Pong query, however, the query does not 

check whether they share many information with the initiating node. Only the ending 

nodes at the same level are inspected when the Ping-Pong algorithm is executed. It 

may be noted also that the maximum possible order of traversal s is equal to the level l 

of the initiating node. The Ping-Pong algorithm is defined below. 

 

Algorithm 6.1.1 Ping-Pong (i,l,s, xk) 

1: Initiator: peer i, 

2: Condition: l > s 

3: Readset = {   
 ,                      

       ,     
    

     
                                   

    
 

     
      

       
      

 } 

4: Action: 

5: s’   1 

6: follow the pointer associated with the searched range xk described by the tuples <xk,tk>  in 

   
       and direct the query to the routing table     

     



81 
 

7: w     s’   s     

8:                  
    

 do  

9:  execute breadth-first search (    
    

) 

10:   s’  - s’+1 

11:   end do 

12: end while 

13: w     s’ > 1 do  

14:                  
    

 do  

send the Search query backwards to the next higher level nodes     
          using 

backward pointer table      
     :  execute inverse breadth-first search (     

    ) 

15:   s’  - s’-1 

16:   end do 

17: end do 

18:       
      do  

          
                                  

        then send OK to    
  

19: end do 

 

Alg. 6.1.1. Ping-Pong algorithm 

 

Fig. 6.1.1 shows step by step the Ping-Pong method of order 1 for transferring the 

range [25, 40] from    
 . Starting from the node    

  (1),     
  uses the pointer that 

correspond to the range [25, 40]  , which is peer C and redirects the Ping-Pong query to 

a node of peer C at the next lower level    
 . The query is then sent backwards to all the 

back-pointers A, B, C at level 1 using the back-pointer table    
 (2). The Ping-Pong 

query is now at the nodes    
 ,    

  and    
  at the same level as the initiating node 

   
 . Thus, we can check if theses nodes are empty or contain the transferring range 

[25, 40]. We see that all these nodes contain the corresponding range. Since peer A is 

looking for another peer j different of peer A to become responsible of the transferring 

range, the query in    
  is ignored and one of the two left nodes    

  or    
  is chosen to 

be responsible for the transferred range (3). 
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Fig. 6.1.1.a. Ping-Pong method of order 1 for transferring the range [25, 50] in    
 . 

 

Let us know take another example where the order of traversal is larger than 1. 

Fig. 6.1.1.b illustrates an example of the Ping-Pong method of order 2. The transferring range is 
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  (1), peer A uses the pointer 

that correspond to the range [40, 60]  , which is peer D and redirects the Ping-Pong query to a 

node of peer D at the next lower level and reaches     
 . Similarly, peer D uses the pointer that 
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  and    
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backwards to all the back-pointers at level 0 of both    
  and    
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   and    

  (3). The Ping-Pong query is now in    
 and    

 . Finally, the queries are again 

sent backwards to all the back-pointers at level 1 of both    
  and    

  using the back-pointer 

tables    
   and    

  (4), and the pong-pong query reaches its final destination nodes    
 ,  

   
 ,    

 ,     
  and    

  at the same level as the initiating node    
 .  

Thus, we can check if these nodes are empty or they contain the transferring range [40, 60]. We 

see that they all contain the corresponding range. Since peer A is looking for another peer j 

different of peer A to become responsible of the transferring range, the query in    
  is ignored 

and one of the other nodes    
 ,    

 ,     
  and    

  is chosen to become responsible for the 

transferred range (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1.1.b. Ping-Pong method of order 2 for transferring the range [40, 60] of    
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6.1.2 Ping-Only strategy 

 

A major drawback of the Ping-Pong algorithm introduced in Section 6.1.1 is that all the 

intermediate nodes at the lower levels are only used for routing the query and are not 

checked for common information at level l with the initiating node    
 . Only the nodes at 

the same level are inspected. In order to overcome these weaknesses, we introduce the 

Ping-Only algorithm that consists of only going down to the peers responsible of 

transferring the ranges at a the next lower-level, and for each traversed node    
   with  

l‟ < l, the node at the same level of the initiating node    
    is checked empty space or 

common information. This means that all intermediate peers inspects their nodes at the 

same level as the initial node    
  which could be more efficient for finding a suitable 

peer j. 

The Ping-Only algorithm is an improvement to the Ping-Pong algorithm in terms of both 

message and time complexity since the traversal is only performed in one way to the 

next lower levels.  

 

The Ping-Only algorithm is introduced below. 

 

Algorithm 6.1.2 Ping-Only(i,l, xk) 

1: Initiator: peer i 

2: Condition: l > 0 , the transferring range xk    

3: Readset = {   
 ,                     

      ,     
                               

    

     
     

 } 

4: Action: 

5: s = 1 

6: while s   l and no OK received by    
  do 

7:                       
   do 

8:  execute breadth-first search (   
    +1) 
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9:          
  is empty or xk       

  then send Ok to    
  

10:  else s <- s+ 1 

11:  end if 

12:       end do 

13: end do 

 

Alg. 6.1.2. Ping-Only algorithm 

 

 Fig. 6.1.2 illustrates an example of the Ping-Only method. The transferring range is 

[40.60] and the initiating node is    
 . Starting from the node    

  (1), peer A uses the 

pointer that correspond to the range [40, 60]  which is peer D and redirects the query to 

peer D by going to the next lower level and reaches     
 . Peer D checks locally its node 

at level 2 (at the same level as the initiating node    
 ) which corresponds to    

 , and 

verifies if it is empty or it contains the transferring range [40, 60] . We can see from Fig. 

6.1.2 that    
  contains the latter range. Therefore, Peer D is chosen for the transfer of 

responsibility from    
  for the range [40, 60] and the Ping-Only operation is terminated. 
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Fig. 6.1.2. Ping-Only method for transferring the range [40, 60] from    
 . 
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6.2 Modified version of the split and merge algorithms 

 

In addition to the transfer of responsibility mechanisms introduced in Section 6.1, the 

split and merge algorithms described in Section 4.2 need to be modified as we 

observed some inaccuracy when updating the distributed b+ tree structure. These 

modifications as well as the revised algorithms are described in the following 

subsections. 

 

 

6.2.1 Split with weak-consistency 

6.2.1.1 Leaf node split 

In the leaf node split algorithm Alg. 4.2.1, we take the following statements under 

reconsideration. Line 13 updates all the back-pointers    
  that are pointing to the split 

leaf node    
 . The update consists of splitting the entry corresponding to the tuple <x,i> 

of back-pointer    
 , where p      

 , into two disjoint entries             and 

         . In addition, line 14 adds the new introduced peer j to the back-pointer 

table    
 . However, these two lines are restricted to the condition that x      

 . We 

think that this condition is irrelevant if we assume the consecutiveness constraint.  This 

constraint assume that the split of a given  range results in two disjoint consecutive 

ranges and the merge operation, in contrary to the leaf node split, can be performed 

only if the merger of  local ranges between the initiating peer and the other peer are 

consecutive and can be combined into one single local range Therefore, all back-

pointers in    
  must describe the whole range x associated with the pointer i to     

  

thereby x =    
  and there is no case where x      

 . Thus, the corresponding condition 

in line 13 is removed. Therefore, lines 12, 15 and 16 can be removed from the leaf node 

split algorithm of Section 4.2.1. We note that the consecutiveness constraint was not 

assumed in [1] where the algorithm was first described. 
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6.2.1.2 Non-leaf node split 

Line 6 of the algorithm Alg. 4.2.2 consists of off-loading some entries from the routing 

table.    
   at level l > 0  by finding a suitable peer j, whose routing table at the same 

level,    
 , either already contains some entries covering some common range Rx 

with    
  or has some space to take a few entries from    

 . If many peers sharing the 

common range Rx are available, Rx may be partitioned into multiple sub-ranges Rxk 

according to the multiple jk peers chosen. However, we are not sure whether the b+ tree 

structure remains consistent with the search operation or if there are some other 

concerns to take into consideration due to sub-range multiplicity of Rxk. For this reason, 

we ignored the case when Rx can be partitioned into multiple sub-ranges Rxk and we 

consider only the case where Rx is not partitioned. We have defined two transfer of 

responsibility mechanisms in Section 6.1.1. Both of these algorithms consider only the 

case when that the transferring is not repartitioned. Again, the consecutiveness 

constraints is assumed, therefore the requested common range Rx must be partly 

covering the right side or the left side of the range in    
  and can never represent a 

middle overlap. The related lines from line 6 to line 23 are also modified accordingly and 

some related notations are also changed accordingly: Line 6 executes the one of the 

transfer of responsibility algorithms. Line 7 partitions    
 into two disjoint subsets   

   and 

  
 , and partition    

  into disjoint ranges   
   and   

 , where   
  refers to the entries to be 

kept and   
  refers to the entries to be transferred. Notice that the decision of which side 

to be transferred is made by    
   The other lines are similar to the original version but 

consider the partition of the range to be transferred into only two ranges rather than a 

multiple number of ranges. 
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The revised parts from the non-leaf node split algorithm are presented below: 

Algorithm 6.2.1.2 SplitNonLeafNode(i,l) 

6 : execute Algorithm Alg. 6.1.1 or Alg. 6.1.2 to find  j  | s.t    
  is empty or    

  has some overlap 

denoted Ee with    
  

7 : Partition    
 into two disjoint subsets   

   and   
 , and partition    

  into disjoint ranges 

   
   and   

 . accordingly 

8 : There must exist   
       

 . If    
  is empty,    

  <-   
  

9 :    
  <-   

  

11 :         
           

  ,    
    <-    

         } 

12:         
  do 

13:  There must exist <x,i>      
    

14:  If         
        

15:      
    <-    

                

16:      
    <-    

              
              

        

17:      
  <-    

       } 

18:  end if 

19 :  If    
  is the highest level in     

20      
    <-     

               
         

21 end if 

Alg. 6.2.1.2. Revised non-leaf node split algorithm 
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6.2.2 Merge operation 

6.2.2.1 Leaf Node merge 

In the merge leaf node algorithm described in Alg.4.2.3, line 6 is executed by the 

merged peer i and consists of finding a suitable partner j for the merged found in    
  , 

where p points to i for some range x       
 , If    

  is pointing to j for some other range 

y, then after the merged, the two entries <x, i> and <y,j> can be merged into <x U y, j>. 

However, in order to merge the two local ranges x and y into one local range, the local 

ranges of the merging peers have to be successive so that we can combine them into 

one local range. Hence, line 6 is adjusted accordingly. 

Additionally, the use of separate transactions involves all merge operations are atomic 

and only the next higher level node    
   has to be checked and merged as necessary 

after merging the leaf node of the peer I and not all the higher-level nodes. In fact, the 

operation of merging all the higher level entries from    
   with    

   regardless the 

overlap between them is no more accurate under the consecutiveness assumption 

since a range interruption may occur among the new merged ranges.  This assumption 

involves that the other atomic operations in the internal nodes should be handled and 

initiated only by the preceding internal nodes after invoking a merge operation. 

Therefore, line 6 is modified accordingly. 

 As a consequence, line 10 releasing the peer i becomes invalid after a leaf node merge 

operation under the assumptions that every merge operation consists of a separate 

transaction and thus all the nodes of the peer i must be empty for the release. Such 

operation should be achieved in a separate transaction corresponding to the non-leaf 

node being merged. Additionally, merging the higher level nodes by peer i before being 

released is not a good approach since these nodes may not be under-loaded and thus 

performing a non-leaf node merge may results in off-loading the resulting node once the 

merger is completed. This operation will cost an additional non-leaf node split in the 

worst case after each non-leaf merge which makes it not efficient. 
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Therefore, line 10 is replaced by another statement that calls the Ping-Only algorithm on 

all the higher level nodes of peer i to search for another peer j that is empty or already 

contains the range of    
  , i.e.          

               
  . 

 . In both cases, peer j will keep the same number of entries as before and thus will not 

be updated. The releases of peer i will also be realized by each merger if he finds out 

that all the nodes of its corresponding peer, including the leaf node, are empty. Notice 

that if a leaf node merge occurs, the highest level node becomes useless since the 

corresponding peer is being released. All the existing entries are therefore removed 

from    
 (line 8). 

The revised parts from the leaf node merge algorithm are presented below:  

Algorithm 6.2.2.1 MergreLeafNode(i) 

6: select j |         
  ,           

  and                           

8 :    
  <-   

9:         
  do 

10:  execute Algorithm Alg. 6.1.2 to find j | s.t    
  is empty  

or            
               

    

11:  end do 

 

 

Alg. 6.2.2.1. Revised leaf node Merge algorithm 
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6.2.2.2 Non-leaf node merge 

Similar to the leaf node merger, only the next higher level node i.e. If    
    , after 

merging a given node    
 , has to be checked and merged as necessary and not all the 

higher nodes. The other atomic operations in the internal nodes should be handled and 

initiated by the preceding internal nodes after invoking a merge operation and follows 

the restriction of successiveness. Therefore, line 10 is modified so that only the node 

   
    is merged if it has too few entries. In addition, if    

   finds out that all the nodes in 

peer i including the leaf node are empty, the peer i is released. Therefore, line 16, 17 

and 18 are added accordingly. 

 

The revised parts from the non-leaf node merge algorithm are presented below:  

 

Algorithm 6.2.2.2 MergreNonLeafNode(i.l) 

6: select j |         
  ,           

    and the ranges of    
         

                

7:    
  <-    

       
  

8: if l is not the top-most level of     then 

9:     
  <-   

10 : merge node     
    as necessary if it contains too few entries 

11: end if 

12: If for any       
      

    is the top-most level of     and contains only one entry pointing to p 

then 

13:  Delete     
    and remove p from    

  

14: end if 

15 :    
  <-   

16 : If for     ,      
       

17:  Release peer i 

18: end if 

 

Alg. 6.2.2.2. Revised non-leaf node Merge algorithm 
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7. Simulation of the b+ tree with weak-consistency 

 

Modeling and analysis are important for studying distributed computing systems and 

can be classified as structural or behavioral modeling. Structural modeling focuses on 

the organization of the network and its components while behavioral modeling focuses 

on the network dynamics. We presented in Chapter 4 a structural model of the 

decentralized distributed b+ tree using the Alloy modeling language in order to explore 

the validity of static properties of the distributed b+ tree with weak-consistency, it also 

gave us a good amount of confidence that the b+ tree structure under the weak-

consistency conditions maintains correct search operations. However, such a model is 

inadequate for the study the dynamics of the P2P network which changes over time 

since data insertions and deletions occur such that the structure of the b-tree may 

change.  Such analysis can only be conducted effectively using simulation. The 

simulation can be represented as an abstract model of the distributed b+ tree structure 

that captures the network features, properties and characteristics to facilitate the 

analysis, and thus can be useful to predict the system performance in terms of both 

message complexity and time delays. We need to investigate the dynamic behavior 

when performing an insert, delete or update operation on the distributed b+ tree through 

simulation to observe how the configuration of the peers and their corresponding routing 

tables adapt to such changes. 
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7.1 Programming environment 

 

The simulation software that I developed is written in the Java programming language 

using the Helios Service Release 1 of the Eclipse software development environment. 

The reason why I chose Eclipse is that it comprises an integrated development 

environment (IDE) and an extensible plug-in that makes it efficient for simulation-based 

methods measurements and analysis. For the purpose of simulation, we used the Java 

SSIM simulation package [14] available at 

http://www.inf.usi.ch/carzaniga/ssim/index.html 

 

SSIM is an object-oriented utility library written in java that provides discrete event 

process-based simulation. SSIM is available free to users since 2003. SSIM implements 

a simulator to run reactive discrete-time processes. These processes execute actions in 

terms of discrete execution steps performed at given times in response to an event 

where events describe a piece of information exchanged between two processes 

through the simulator. During the execution of an action, a process may schedule other 

future actions for itself, or it may signal events to other processes, which will respond by 

processing the signaled events at the given further time. The simulation terminates 

when no more actions are scheduled. These processes are defined by the interface 

Process and must be implemented by a simulated process. The SSIM library defines 

the basic interface of a process, and provides the main simulation scheduler, including 

methods for creating, starting, and stopping processes, and for scheduling events or 

signaling other events. For instance, a process can start an action immediately once 

being created or can stop an action being executed. It can also execute an action in 

response to an event signaled to its process by another process or execute an action in 

response to a timeout. Alg. 7.1.1 introduces the methods that may be used by the 

simulated processes to implement the interface Process. 

 

 

 

http://www.inf.usi.ch/carzaniga/ssim/index.html


95 
 

 

 

 

//action executed when the process is created. 

public void init() { 

 } 

 

//action executed in response to an event signaled to this process 

public void process_event(Event event) { 

 } 

 

// action executed in response to a timeout. 

public void process_timeout() {    

 } 

 

// action executed when the process is explicitly stopped. 

public void stop() { 

 } 

Alg. 7.1.1. Methods used by the simulated processes to implement the interface 

Process. 

 

 

The class that realizes the generic discrete-event sequential simulator is denoted by 

Sim. Sim maintains and executes a time-ordered schedule of discrete events at different 

virtual times. In case some events are scheduled at the same virtual time, the simulator 

is asked to queue these events as a priority queue, i.e. first in first out fashion. The 

Simulator is also responsible for starting and stopping the simulation. The class Sim 

compromises a set of methods that can be used for creating and releasing processes, 

scheduling and signaling events or running and stopping the simulation. For instance, 

the simulator can create, schedule, stop and delay a current process at a given time. It 

can also signal an event to be executed at a given time. 
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 Alg. 7.1.2 introduces the methods used by the class Sim. 

 

 

//Advance the execution time of the current process by a given delay 

static void advance_delay(long delay)  

 

// Resets the simulator making it available for a completely new simulation. 

static void clear()  

 

// Returns the current virtual time for the current process. 

static long clock()  

 

//Creates a new process creates a new process for a  given simulated process. 

static long create_process(Process process)  

 

//Run the simulation 

static void run_simulation()  

 

// Sets a timeout for the current process after a given amount of (virtual) time t. 

static void set_timeout(long t)  

 

 

// Signal an event to the given process that identified by pid. 

static int signal_event(Event evt, long pid)  

           

// signal an event to the given process that identified by pid after a given amount of (virtual) time delay. 

static int signal_event(Event evt, long pid, long delay)  

 

// Stops the execution of the current process. 

static void stop_process()  

     

http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#advance_delay(long)
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#clear()
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#clock()
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#create_process(ssim.Process)
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#run_simulation()
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#set_timeout(long)
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#signal_event(ssim.Event, long)
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#signal_event(ssim.Event, long, long)
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#stop_process()
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//Stops the execution of a given process that is identified by pid. 

static int stop_process(long pid)  

         

// Stops execution of the simulation 

static void stop_simulation()  

 

// Returns the pid of the current process 

static long this_process()  

         

Alg. 7.1.2. Methods used by the class Sim 

 

 

In this project, we keep the study of the distributed b+ tree with weak-consistency in a 

real peer-to-peer system for future work and we focus on the simulation part of the 

program that uses the Simple Discrete-event Simulation Library SSIM. 

 

This implementation is tested on an Intel(R) Core(TM) 2 Duo CPU T6500 Peer running 

at 2.10 GHZ. The system has a 32 bit processor with a RAM Memory of 4.00 GB. 

For figures and Charts, I used the MATLAB numerical computing environment. 

Developed by MathWorks, MATLAB allows plotting of functions and data, creation of 

user interfaces and interfacing with programs written in other languages , including C, 

C++ , Java and Fortan. 

 

For the simulation results, I limited the number of simulated peers to 1000. The reason I 

chose a maximum of 1000 peers is that it is easy and fast to test and verify the results 

of a network having less than 1000 peers. For a network having more than 1000 peers, 

the execution time takes somewhat longer but we presume that  the measurements on 

a system with no more than 1000 peers are sufficient and consistent with the ones 

using large-scale network databases. 

 

http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#stop_process(long)
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#stop_simulation()
http://www.inf.usi.ch/carzaniga/ssim/javadoc/ssim/Sim.html#this_process()
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7.2 Design of the b+ tree simulation system 

The simulation software is essentially composed of three main classes: the Peer, the 

User and the P2PSim, the main class that represents the simulation environment. The 

different classes interact with each other in the system by means of messages and 

interfaces as shown in the following diagram: 

 

 

Fig.7.2.1. Interaction between the main classes in the Simulation environment 

 

We define the architecture, the specifications and requirements as well as the behavior 

of the distributed b+ tree simulation system using the Unified Modeling Language UML 

[19]. Developed by the Object Management Group OMG [19]. UML is a standardized 

modeling language that defines the notation and semantics of object-oriented software 

systems. The OMG group defines the UML language as follows: 

 

"The Unified Modeling Language (UML) is a graphical language for visualizing, 

specifying, constructing, and documenting the artifacts of a software-intensive system. 

The UML offers a standard way to write a system's blueprints, including conceptual 

things such as business processes and system functions as well as concrete things 

such as programming language statements, database schemas, and reusable software 

components." 

User 
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Peer SSIM Simulator 
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We use a UML Class diagram to model the distributed b+ tree structure. The Class 

diagram is used to represent the static structure of the system model  using objects, 

attributes, operations and relationships. 

 

The class diagram describes the architecture of the system by illustrating the system‟s 

classes, their attributes, and the relationships among these classes. Each class in the 

class diagram is represented by a rectangle that is divided into three compartments: the 

name of the class, the class attributes as well as the class methods. Additionally, the 

classes are linked together if necessary depending on the relationships between them. 

The complete distributed decentralized b+ tree Class diagram is shown in Fig. 7.2.2. . 
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The main classes shown in Fig. 7.2.2 and their relationships may be described as 

follows: 

 

Peer Class and relationships 

The peer class comprises the simulated peers executing given tasks that may be 

requested by users. In order to initiate a given task, the Peer class implements the 

ServiceInt interface containing the list of tasks that can be initiated by users. Alg.7.2.1 

shows the methods used by the interface ServiceInt. 

 

public interface ServiceInt { 

   

  //this method inserts a data with a given key 

  public void Insert(int refId, int key, String data); 

 

  //this method deletes a data associated with a given key 

  public void DeleteKey(int refId, int Key); 

 

  //this method search for a given key  

  public void SearchKey(int refId, int Key); 

 

  //this method search for all the keys in a given range  

  public void SearchRange(int refId, int left, int right); 

 

//this method splits the Local Range in the vicinity of the mean 

key 

  public void LeafNodeSplit(int refId); 

 

//this method splits the Range of a node in a given level in the 

vicinity of the closest border to the mean key  

  public void NonLeafNodeSplit(int redId,int level); 

 

  //this method merge the local range of a leaf node  

  public void LeafNodeMerge(int redId); 
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//this method splits the Range of a node in a given level in the 

vicinity of the closest border to the mean key  

  public void NonLeafNodeMerge(int redId,int level);  

   

 

 } 

 

 

Alg.7.2.1. Methods used by peers to implement the interface ServiceInt 

 

These tasks are performed collaboratively by several peers. In order for the peers to 

communicate with one another in the system. three classes, MessageSender, 

MessageReceiver and MessageUpdater implement the interface Process and play the 

role of a communicating actor for the peers in the simulation environment. 

 Indeed, each peer is associated with a message sender, an instance of the class 

MessageSender, used to send messages, and a message receiver, an instance of the 

class MessageReceiver, to receive messages. Additionally, an instance of the class 

MessageUpdater is used to schedule an update event to a self node at a given level. 

When a message is given to the message sender, a message event is created and 

scheduled by the simulator. The event is  of the class Event_M, which corresponds to a 

message sent by a peer, and is inherited from the class Event. In fact, peers 

communicate with one another by means of messages and each message corresponds 

to an instance of the Message class. When a message is sent, a new event is 

scheduled at a further time. This event is then processed by the message receiver of 

the destination peer at the scheduled virtual time and delivered to the corresponding 

destination peer instance. Notice that for performance purposes, we have chosen to 

maintain the message propagation delay between peers to zero so that each message 

sent by a source peer is immediately received by the destination peer or by a given user 

with no delays. In addition to the messages sent by peers, two other classes inherited 

from Event are used: MessageUser and Message_Updater. MessageUser corresponds 

to an external query made by the user that used the ServiceInt interface in the 

simulation environment. Message_Updater is used by a peer each time its number of 
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entries changes at a given level of the routing table. In the case that this number is less 

than the minimum number of entries allowed, a merge operation is performed. In 

contrary, when a node of the peer is over-loaded in terms of entries, a split operation is 

performed on that node. 

 

Alg.7.2.2. shows the attributes and the methods used by the message senders to 

implement the interface Process. 

 

public class MessageSender implements Process{ 

  

//describes the process identification of the message receiver in the 

//simulation environment 

public long processId; 

 

// describes the destination peer to receive the message sending 

//event 

public Peer peer; 

  

 //constructor 

 public MessageSender(Peer peer){ 

  this.peer = peer; 

  processId = Sim.create_process(this); 

  

 } 

  

 //call the sendM on the appropriate Peer instance 

 

 public void sendM(Message m) { 

 

//signal the message event on the appropriate MessageReveiver 

instance 

 

  Event e = new Event_M(m); 

  m.dest.peer.receiver = new MessageReceiver(m.dest.peer); 
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Sim.signal_event(e,m.dest.peer.receiver.processId,P2PSim.MEAN_MES

SAGE_PROPAGATION_DELAY); 

 

Alg. 7.2.2. Attributes and methods used by message senders to implement the interface 

Process. 

 

 

Alg.7.2.3. shows the attributes and the methods used by the message receivers to 

implement the interface Process. 

 

public class MessageReceiver implements Process { 

  

//describes the process identification of the message receiver in the 

simulation environment 

 public long processId; 

 

 // describes the destination peer to receive the message reception 

//event 

 public Peer peer; 

 

 //constructor 

 public MessageReceiver(Peer peer){ 

  this.peer = peer; 

   processId = Sim.create_process(this); 

 } 

  

 

 //Process the message reception event e 

 public void process_event(Event e) { 

   

//handle the message reception event if it is of type message 

event Event_M 
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  if(e instanceof Event_M) handle_Message((Event_M)e);  

 } 

 

 //call the reveiveM on the appropriate Peer instance 

 private void handle_Message(Event_M e){ 

  Peer destination =e.message.dest.peer; 

  destination.receiveM(e.message); 

 } 

 

Alg. 7.2.3. Attributes and methods used by message receivers to implement the 

interface Process. 

 

 

Additionally to the MessageSender and MessageReceiver classes that implement the 

interface Process, a supplementary class called MessageUpdater implements also the 

Process interface and is used to make a self update operation in a peer on one of its 

nodes at a unique future time. The updating message consists of signaling a split 

operation when the number of entries is too high or a merge operation when the number 

of entries is too low. When an update message occurs, a peer event is created and 

scheduled by the simulator; such an event is of the class Event_Peer inherited from the 

class Event. This event is processed and executed by the same peer at given unique 

future time as a transaction (as explained in Section 3.6). In order to ensure the time 

uniqueness when processing the update operations, a static attribute denoted by Delay 

is used by the MessageUpdater class to maintain all the peer events distinct from one 

another in the event scheduler, in contrast to MessageSender and MessageReceiver 

instances that assume that a source peer is immediately received by the destination 

peer or by a given user with no delay. 
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Alg.7.2.4. shows the attributes and the methods used by the message updater to 

implement the interface Process. 

 

 

public class MessageUpdater implements Process { 

 

 

// static attribute denoted by Delay is used to maintain all the update 

events distinct from one another in the event scheduler 

 public static long Delay = 1; 

 

//describes the process identification of the message receiver in the 

simulation environment 

 public long processId; 

 

 //constructor 

 public MessageUpdater(){ 

   processId = Sim.create_process(this); 

 } 

 

 

//handle the update event if it is of type message Event_Peer 

public void process_event(Event e) { 

  if(e instanceof Event_Peer) handle_Message((Event_Peer)e);  

 } 

 

  

// call the NonLeafNodeSplit or the NonLeafNodeMerge on the appropriate 

Peer instance at the appropriate level. 

 

 private void handle_Message(Event_Peer e){ 

  Peer concernedPeer =e.peer; 

  int concernedLevel = e.level; 

  //ref id -1 means it's an automatic update 
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if((concernedLevel < concernedPeer.routingTable.size() && 

concernedPeer.routingTable.get(concernedLevel).entries.size() < 

P2PSim.MIN_ELEM) || concernedPeer.flagMerge == true){ 

   concernedPeer.NonLeafNodeMerge(-1,concernedLevel); 

  } 

   

elseif(concernedPeer.routingTable.get(concernedLevel).entries.siz

e() > P2PSim.MAX_ELEM){ 

//ref id -1 means it isan automatic update 

  concernedPeer.NonLeafNodeSplit(-1,concernedLevel); 

  } 

 

 } 

  

  

Alg. 7.2.4. Attributes and methods used by the message updater to implement the 

interface Process 

 

 

Moreover, each peer maintains a unique peer id, denoted by peer_id, which is used 

locally to balance its ranges when a range transfer occurs so that the probability of 

finding a peer j for a transfer of responsibility remains uniform (see Section 7.3). This 

attribute may also be used for debugging purposes. A User instance is also referred to 

by the Peer class in order to call back the corresponding user and deliver the results of 

an operation. 

It may be noted that the same peer structure as described in the previous sections is 

used here, where each peer contains a multi-level routing table composed of a list of 

nodes, one at each level. The node at the lowest level of the routing table corresponds 

to the local range of the peer. This leaf node contains the local Data which holds the set 

of data entries and keys stored by users and described by tuples <key, data>. Each 

non-leaf node is composed of a list of entries of the form <range, pointer> where with  

each range is associated a pointer that points to the same peer or a different peer in the 
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next lower level. Each node maintains also a list of back-pointed peers to know which 

peers are pointing to it in the next upper level. Additionally, each Peer holds a variable 

called myHighLevel and is used to store the number of nodes i.e. the height of its 

routing table. Each node knows the Peer instance it belongs to and maintains an 

attribute denoted level to identify the level in the routing table it is associated with. 

 

User Class and relationships 

The user plays the role of an external entity to the system and can initiate an action or 

receive some feedback any time during the simulation process. The user communicates 

with the simulation environment by implementing two interfaces; the first is the Process 

interface and is responsible of signaling new queries when there is a new user initiative 

to be taken by the user. This initiative consists of executing a signaled event instance of 

the Event_User class. The action to be executed depends on an attribute in the User 

class called userState and corresponds to the user state. When userState is 1, the user 

is  inserting  a given data to the given key. userState 2 means that the user is searching 

for data that is associated with a given key. userState 3 indicates that the user is looking 

for data associated with a given range. In addition, userState 4, 5, 6 and 7 corresponds 

to local update operations that are performed on the distributed b+ tree structure such 

as splitting a given leaf node, splitting a non-leaf node, merging a leaf node or merging 

a non-leaf node, respectively. The software is basically designed in such a way that the 

peers are updated implicitly and only the peers can automatically initiate or signal a new 

update operation when needed. However, we implemented these user states from 4 to 

7 for simulation purposes so that we can analyze and measure step by step the 

behavior of the b+ tree structure at any time when any update operations take place. 

Furthermore, a second user interface called ServiceCallBack interface is implemented 

by the User class and provides a call back service to the User instances. This 

ServiceCallBack interface is used by the corresponding peers to provide the results 

after performing a given task. It includes four methods, the SearchResult , the 

InsertResult, SplitResult and Mergedesult. These methods provide print-out, feedback 

gathering for statistics and recording information  after the simulator finishes executing 
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certain tasks. They are useful for measurements purposes.  Alg.7.2.5. shows the 

attributes and the methods used by the User class to implement the interface 

ServiceCallBack. 

 

 

public interface ServiceCallBack { 

  

 //returns the results of a search operation 

 public void SearchResult(int refId , List<DataEntry> data,int status); 

 

//returns the results of an insert operation 

 public void InsertResult(int refId , int status); 

 

//returns the results of a split operation 

 public void SplitResult(int refId , int status); 

 

//returns the results of a merge operation 

 public void MergeResult(int refId , int status); 

 

//returns the results of a delete operation 

 public void DeleteResult(int refId , int status); 

 

 

//variable used to define the final state 

 

 final int OK = 0; 

  

} 

 

Alg. 7.2.5. Attributes and methods used by the user to implement the interface 

ServiceCallBack 
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Description of the exchanged messages 

 

  The message class represents a message or a piece of information exchanged 

between two peers through the simulator. All the messages must contain as a 

parameter the source peer, the destination peer and a unique reference number of the 

message. In addition, each message uses some parameters that can be used by the 

other peers. A brief description of the query message types used in this simulation and 

their parameters is given below: 

    

1.M_InsertKey (key, level, data)  

Message navigating from one peer to another by going one level down until the 

destination peer is reached, and the given data and the corresponding key are 

inserted. 

 

2.M_SearchKey (key, level)  

Message navigating from one peer to another by going one level down until the 

destination peer is reached, and the data corresponding to the given key is 

searched 

 

3.M_SearchRange (keymin, keymax, level, counter) 

Message navigating from one peer to another by going one level down until it 

reaches its destination peer and searches for the data at its corresponding 

subrange bounded by keymin and keymax. The counter is used to count the 

number of keys in the sub-ranges to make sure that all the initial keys in the 

searched range are explored. 

 

4.M_UpdateBack-pointers (level, splitkey, introducedPeer, side) 

Message sent to the back-pointed peers at the next higher level to split its entry 

and one of these two entries will point to the hired peer. 
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5.M_MergeBack-pointers (level, mergekey, introducedPeer, side) 

Message sent to the back-pointed peers at the next higher level to merge two of 

its entries to one single entry. 

 

6.M_Split (myLocalRange, back-pointers, levelToCopy, entries, newData) 

Message sent to a new introduced peer giving him responsibility of a part of its 

split local range at the lowest level. 

 

7.M_LeafNodeMerge (myLocalRange, back-pointers, mergingData, mergingkey, 

side) 

Message sent to another peer to merge its local range at the lowest level 

 

8.M_ CheckNonLeafNodeBack-pointers (level, nonCoveredRange) 

Message sent to a given peer at a given level to check if its range can cover a 

part of a given range. 

 

9. M_AddMyBack-pointers (back-pointers, level) 

Message sent to a given peer at a given level to copy its back-pointers. 

 

 10. M_SuppressMeAsBack-pointer ( level) 

Message sent to a given peer at a given level to delete it from back-pointers. 

 

11. M_AddMyNode (nodeToCopy, level) 

Message sent to a given peer at a given level to copy its corresponding node. 

 

 

12.M_ CheckMergedBack-pointers (level, mergingRange) 

Message sent to a given peer at a given level to check if a neighboring range can 

be merged up.  
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13. M_UpdateEntrySizeBack-pointers(level) 

Message sent to a back-pointer at an upper level asking to check the size of the 

entries and update them accordingly. 

 

In addition, to each query message corresponds a result message having the 

same name but ending with the word “Result”. For instance the result message 

for M_InsertKey is M_InsertKeyResult. Such message is sent back to the source 

and holds a binary parameter, 0 if the query was successful and 1 if the query 

encountered an error.  
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7.3 Implementation choices 

 

Many actions could be taken to improve the distributed b+ tree system so that the 

system can reach its highest performance such as the appropriate maximum and 

minimum number of entries to be used by each node before making an update, Another 

major perfective optimization is to keep the workload equally distributed among the 

nodes before and after the update operations. In the subsections below, the range 

balancing criteria is described and the node/entry trade-off is then discussed. 

 

7.3.1 Balancing the Ranges 

 

Our first observation is that in the distributed b+ tree structure,  we have to maintain a 

convention regarding the way the entries are transferred  so that they remains equally 

distributed and balanced among peers. Indeed, when a non-leaf node splits or a non-

leaf node merges, the number of entries of the split node is reduced and part of the 

range is suppressed from the corresponding node and transferred to another available 

peer j. If the decision of splitting the concerned range is randomly made, we may face a 

situation where the same common ranges are suppressed from many nodes and the 

probability of finding an available peer j becomes very low for some entries and very 

high for other ones. In that case, there is no peer that can be responsible for holding the 

transferred range, and the non-leaf node splits or merges become unfeasible. In order 

to maintain a reasonable balancing between the nodes of all the peers at a given level 

so that the probability of finding a given range in a given node is equally distributed 

among all nodes, a convention has to be made following some implementation choices. 

A simple way is to give a unique peer ID that is maintained by each peer in the 

distributed b+ tree. This static parameter is a non-decreasing integer that is incremented 

and allocated to each new peer introduced. This unique ID can be used when a non-leaf 

split is performed by choosing which side of the node has to be suppressed. For 

instance, a parity convention may be maintained so that the odd peers i.e. the peers 

whose unique ID is odd always perform a left non-leaf split so that only the left side 
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portion of the corresponding node is suppressed, while the peers having an even ID 

always perform a right non-leaf split so that only the right side portion of the 

corresponding nodes is suppressed. By using such an approach, we attempt to keep 

the split ranges suppressed fairly so that the probability of finding an existing peer that 

could perform the transfer of responsibility at the same level is uniformly distributed 

among all peers. This approach has some cost in terms of memory allocation since it 

requires a new parameter peer ID to be maintained by each peer. However, it 

guaranties a perfect symmetry of the distributed ranges among different nodes at the 

same level.   

Another solution to range balancing has a lower cost and consists of delegating the 

responsibility of choosing which side range comprised in a given node to be transferred 

to the leaf nodes of the corresponding peer. Such operation may be performed locally 

by each peer and a convention can be made so that each non-leaf node communicates 

with the leaf node of the same peer: if the leaf node holds a local range comprised in 

the left side portion of the universe of key value U, the non-leaf node performs a left 

non-leaf split so that only the left side portion of the corresponding node is suppressed. 

In contrary, if the leaf node holds a local range comprised in the right side portion of the 

universe of key value, the non-leaf node performs a right non-leaf split so that only the 

right side portion of the corresponding node is suppressed. This method consists of a 

simple comparison with the universe of key values U that is already maintained by each 

peer and there is no need to add a new parameter here, in contrary to the previous 

approach that uses a unique peer ID.  However, this approach does not guarantee a 

perfect symmetry of the distributed ranges among nodes at same level since the split 

and merge operations depends only on the data key insertions and deletions in some 

specific ranges and such action is beyond the control of peers and only performed by 

users. We may face a situation where some ranges in the left side portion of the 

universe of key values are over-loaded while the ranges in the right side portion of U 

remain under-loaded which results in more splits and mergers in the left side of U than 

in the right side.  Therefore there would be more suppressed ranges from the left side 

than from the right side, and the symmetry cannot be maintained. For this reason, we 

have used the parity convention for our simulation. 
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7.3.2 Node/Entry trade-off 

Typically, performing a split operation results in raising the number of entries maintained 

by each node and this will slightly increase the depth of the distributed b+ tree, and 

similarly the number of levels in each peer may decrease while performing a merge 

operation. The lower and upper bounds on the number entries per node are 

parameterized by the order of the b+ tree p which is maximum number of entries 

allowed per node. The minimum number of entries allowed per node is p/2. 

The average fan-out, i.e. the mean of the number of entries per nodes relates the 

number of levels per peer to the number of peers in the system by the relationship: 

 

                                

 

To ensure that the b+ tree is maintained optimally for the number of entries per node, a 

study of the characteristics and properties is conducted by simulation to determine 

which settings should be used to reach the highest performance of the distributed b+ 

tree with weak-consistency in terms of number of exchanged messages and execution 

delays. 

 

7.3.3 Adapting the program to a real P2P system 

 

The simulation program is designed in such a way that it is relatively easier to make 

some changes in order to obtain a real implementation of peer nodes that would 

execute the algorithms in an environment where each peer is communicating through 

the Internet with other peers running on different computers, or running in the same 

computer as a separate task. Therefore, the class “Peer” can be either used by the 

simulation environment by means of the discrete event simulator SSIM or within 

distributed real time applications.  
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8. Results of the simulation 

 

In this chapter, we discuss the experimental results obtained from the distributed b+ tree 

simulation described in Chapter 7. In particular, the growth of the distributed b+ tree 

structure is first introduced and the Ping-Pong and the Ping-Only strategies are 

compared, the system parameters in the stationary state with insertion and deletion 

periods are illustrated, and a comparison of some particular system situations is also 

given. Notice that the maximum number of entries per node, i.e. the order of the b+ tree 

is fixed to p = 3 in this simulation. If we use a higher p for the system, the number of 

levels is reduced and may perhaps not exceed 4 levels for a network of 1000 peers. 

Therefore, we have chosen a maximum fan-out of p = 3 which allows us to investigate 

with clarity the distributed  b+ tree properties for a network of 1000 peers and a number 

of levels per peer higher than 4. However, b+ trees usually have much bigger fanouts in 

practical systems. This parameter may be changed for the study of networks with a 

higher number of peers i.e. for b+ tree systems holding millions or billions of nodes. 

 

 

8.1 Growth of the distributed decentralized b+ tree 

 

We grow the distributed b+ tree network by performing a certain number of key 

insertions until we reach a network having 1000 peers, and we observe instantly the 

behavior of the increase in both depth of the b+ tree and the number of back-pointers 

per non-empty node. Notice that only the Ping-Only algorithm is used in the following 

subsections as it has been shown that the Ping-Only strategy is much more efficient 

than the Ping-Pong strategy (see Section 6.1 for details). 
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8.1.1 The depth of the b+ tree 

 

Fig.8.1.1. Growth of the distributed decentralized b+ tree structure 

 

We observe from the above diagram that the mean of the highest level (averaged over 

all peers in the networks) constantly increases as we increase the number of peers. The 

system tries to maintain the same number of levels in each peer when the network is 

growing. For instance, the highest level mean is 6 when the b+ tree structure comprises 

200 peers while the highest level mean is 7 when the b+ tree structure comprises 400 

peers. In fact, performing leaf node split operations by key insertions results in an 
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increase of the number of entries maintained by each node when updating the back-

pointed peers at the next higher level that have an entry pointing to the split leaf nodes. 

This leads to non-leaf split operations among these non-leaf nodes and will slightly 

increase the depth of the distributed b+ tree by increasing the number of levels in those 

peers. The system hence tries reasonably to maintain the same number of levels in 

order to keep the b+ tree structure balanced. This result comes from the assumption 

that the number of levels is only dependant of the number of entries per node as well as 

the number of peers in the system, as discussed in Section 7.3.  

8.1.2 Mean number of back-pointers 

 

Fig.8.1.2. Effect of growing the distributed decentralized b+ tree on the mean number of 

back-pointers 
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When the b+ tree is growing by performing key insertions, leaf-node and non-leaf node 

updates occur which may slightly increase the number of back-pointers in the system. In 

fact, when a split operation is performed, a part of the range of the split node is 

transferred to another available node and all the back-pointers pointing to the split node 

will have an additional entry that is pointing to the new node at the next higher level. 

However, since the back-pointer table is maintained by the nodes and not by the 

entries, the back-pointers of the split node may be copied to the back-pointers of the 

new available node.  But these back-pointers may keep pointing to the split node if they 

comprise in their entries a range that is described in the kept part of the split range. 

Hence, this will slightly raise the number of back-pointers in the system. Additionally, 

when the split occurs in the highest level node of a given peer, a new level is added to 

its routing table and this new node describes the universe of key values and is 

composed of two entries: one entry comprise a self-range that describes the kept part of 

the split range in the node of the same peer at the next lower level, while the second 

entry comprises a range pointing to the available node that became responsible of the 

transferred part of the range at the next lower level. This procedure will also slightly 

increase the number of back-pointers in the system. However, we can see from the 

above diagram that the mean number of back-pointers obtained after a long period of 

random insertions tends to be constant as we grow the b+ tree structure, which is 

considered a good sign of stability.  
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8.2 Comparing the exploration mechanisms 

The experimental results of the Ping-Pong strategy showed that it is not always possible 

to find an existing peer j whose routing table, at the same level    
   is empty or already 

contains some entries covering some common range with   
 . In contrary, the Ping-

Only strategy always finds such a peer.  The major reason for the Ping-Pong strategy 

drawback is that most of the explored tree nodes are only used to traverse the b+ tree. 

It consists of performing the Ping operations first by traversing the next-lower level 

nodes, but then returns the query to higher level nodes by using the back-pointers of the 

traversed nodes until it reaches some nodes at the same level as the initiating node. 

Therefore, the algorithm can only reach non-empty nodes by traversing the back-pointer 

nodes, and all the empty nodes, which represent a good prospect for a range transfer, 

are ignored. In order to overcome this weakness, we somewhat modified the Ping-Pong 

version by allowing it to behave as a Ping-Only algorithm for only one level of traversal. 

This procedure is expected to reach empty nodes with a reasonable probability by 

checking the ranges of the peers associated with their pointers at the same level and 

thus making the comparison of the two algorithms possible. We compare both the 

modified Ping-Pong strategy and the Ping-Only strategy by means of message 

complexity, the order of traversal as well as the level distribution of the empty-nodes 

and non-empty nodes found for a network of 1000 peers where each peer comprises a 

routing table composed of 9 levels. The experimental results obtained for both Ping-

Pong and Ping-Only algorithms, while the b+ tree structure is grown up to 1000 peers, 

are illustrated in the following sub-sections. Notice that all the records are obtained 

during the system buid-up. 
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8.2.1 Comparing the message complexities 

Fig 8.2.1. Comparing the message complexities when the b+ tree is growing 

 

 

The figure above shows the increase in the number of messages for the Ping-Pong 
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We can clearly see that the number of messages in the Ping-Pong mechanism is much 

higher than the number of exchanged messages in the Ping-Only mechanism. This is 

due to the fact that in the Ping-Pong transfer of responsibility, the nodes traversed by 

the query at the lower levels have only a role of routing and they do not self-check if 

they have empty-nodes or if they share some common ranges at the same level as the 

initial peer. Instead, it makes use of the back-pointer tables to reach the nodes at the 

same level as the initiating node. Since each node may maintain a back-pointer table 

having more than one back-pointed peer, the number of traversed peers increases as 

we go backwards to reach the peers that are at the same level as the initiating peer, 

which exponentially increases the number of exchanged messages. 

In contrary, the Ping-Only operation consists of only pointing down to the peers 

responsible for the transferring ranges at the next lower level, and for each traversed 

node, the node belonging to the same peer at the same level as the initiating node is 

checked instantly, instead of pointing backwards to the peers responsible for nodes 

containing these entries in the next higher level nodes. The number of exchanged 

messages is thus significantly reduced, which makes the Ping-Only algorithm much 

better to use than the Ping-Pong algorithm in terms of message complexity. 

 

 

 

 

 

 

 

 

 



123 
 

8.2.2 Comparing the order of traversals 

The order of traversal in the Ping-Pong strategy (left diagram) describes the number of 

traversed levels to reach a break-point node i.e. the pausing node after the execution of 

Ping operations and just before the execution of the Pong operations.  In contrast, the 

order of traversal in the Ping-Only strategy (right diagram) describes only the number of 

traversed lower levels, i.e. only the performed Ping operations that are required to reach 

an available node. The figure below illustrates the histogram of the order of traversal 

with both Ping-Pong and Ping-Only algorithms. 

Fig 8.2.2. Comparing the order for traversal by Ping-Pong algorithm and Ping-Only 

algorithm 
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The distribution of the order of traversal in the Ping-Pong strategy consists of a 

decreasing Stair-step graph where most of the available nodes are found in proximity to 

the initiating node. This shape is due to the recursive behavior of the Ping-Pong 

strategy which consists of repetitively going-down a certain number of levels then 

repetitively going backwards the same number of levels until an available node is found. 

In each Pong operation in the Ping-Pong strategy, all the back-pointers of the traversed 

nodes receive a Pong query and this operation is repeated in a recursive way until an 

available peer is found. The above histogram of the Ping-Pong algorithm only shows 

four orders of traversal since the algorithm was implemented in a restricted manner 

allowing only up to 4 orders. However these implemented orders are sufficient to expect 

the stair-step shape of the order of traversal distribution. 

In contrary, Ping-Only strategy starts from the highest node and is always oriented 

towards the next lower level nodes which results in an irregular traversal of the 

distributed b+ tree where the traversed nodes only check if the peer they belong to 

comprises a suitable node at the same level. If not, it redirects the query to all the 

pointers associated with its ranges, until an available peer is found. We also observe 

from the above histogram of the order of traversal with the Ping-Only algorithm that the 

frequency of reaching a leaf node by traversing the distributed b+ tree structure from a 

highest level node to the lowest level node is high. 
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8.2.3 Comparing the levels of the suitable nodes found 

 

 

Fig 8.2.3. Comparing the level distribution of non-empty nodes found by Ping-Pong 

algorithm and Ping-Only algorithm 
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We observe from the above level distribution diagrams that the frequency of finding an 

empty node in both Ping-Pong and Ping-Only algorithms increases with the increase of 

the level index in which the empty node is found and the frequency of finding empty-

nodes decreases as we reach the highest level nodes. In fact, when we perform split 

leaf node operations, a new peer is introduced and only the leaf node and the highest 

level node of the new peer allocate new entries that are copied from the split node while 

all the internal nodes, i.e. the nodes between them, remain empty.  Since the highest 

level node of the new peer contains the universe key value U, there is a low probability 

of finding a node that contains this global range at the same level. Therefore, there is 

more chance to find empty nodes in the lower levels than in the higher level nodes 

when a transfer of responsibility operation is performed using both Ping-Pong or Ping-

Only strategies. This frequency of finding empty nodes increases as we reach the 

highest level nodes. The same reasoning as in the level distribution of empty-nodes 

found is also applied here. 

In contrary, the frequency of finding a non-empty node decreases with the increase of 

the level index in which the empty node is found in both Ping-Pong and Ping-Only 

algorithms. 
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8.3 Stationary system state with insertion and deletion periods 

 

In this section, we intend to reach the steady state of the distributed b+ tree structure by 

performing several key insertion and deletion periods after the system is initially grown 

to 1000 peers, An insertion period consists of insertions of random keys until a total 

number of 1500 peers is reached. This is followed by a key deletion period which 

consists of randomly selected key deletions until the number of peers in the system 

reaches again 1000 peers. After several such key insertion and deletion periods, we 

expect the system to enter a steady state, meaning that the probability distribution of the 

number of empty nodes, of back-pointers and of entries in non-empty nodes do not 

change when another sequence of insertion and deletion periods is executed. 

In this simulation, we perform three successive insertion and deletion periods starting 

from a network with 1000 peers where each peer maintain a routing table composed of 

9 levels from 0 to 8.The following results are collected after each pair of insertion and 

deletion periods. We assume that if the resuklts of subsequent periods have have 

similar shape, then we can assume that the system has reached its steady state. 
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8.3.1 Distribution of empty nodes  

 

Fig.8.3.1 Distribution of the number of empty nodes per peer in the stationary system 

state 

 

 

We can see from the above diagram that the empty nodes distribution in each peer is 
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We also observe that the highest frequency of the number of empty nodes per peer is 

observed in the peers having 7 empty nodes when the highest level in each node is 

maintained at 8. We may believe that this edge is due to the leaf node split updates that 

consists of transferring a part of the local range of the merging leaf node to the local 

range of a new introduced peer and copying the highest level node to the node at the 

same level of the latter peer. Thus, only two nodes are occupied while the new 

introduced peer is maintaining a routing table of 9 levels from 0 to 8. This leads to 7 

empty nodes in this introduced peer. If such operation is performed a reasonable 

number of times, all the new introduced peers involved will maintain a constant number 

of 7 empty nodes. We may assume that the highest frequency of the empty nodes per 

peer occurs when the system reaches the steady state with a number of 7 empty nodes 

per peer. This observation is thus consistent with our expectations. 

8.3.2 Distribution of the number of back-pointers 

Fig.8.3.2 Distribution of the number of back-pointers per non-empty node in the 

stationary system state 
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We can see from the above diagram that the distribution of the number of back-pointers 

per non-empty node is relatively similar for the three insertion and deletion periods. This 

observation allows us to assume that the steady state is reached for the three 

consecutive insertion and deletion periods operations starting from a network of 1000 

peers. 

We also observe that the frequency of the number of back-pointers per non-empty node 

is noticeably high with nodes having approximately 300 and 400 back-pointers in each 

non-empty node. This means that some nodes maintain a high number of back-pointers 

and there are only few paths that are used by many peers to reach the range comprised 

in the entries of such nodes at a given level. We were not able to identify the reasons 

for this high number of back-pointers and this subject remains an open problem for 

future studies. 
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8.3.3 Distribution of the order of traversals 

Fig.8.3.3 Distribution of the order of traversal in the stationary system state 
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We also observe from the above histogram that the frequency of reaching a leaf node 

by traversing the distributed b+ tree structure from a highest level node to the lowest 

level node is high, which is of order of traversal 7 in the above right diagram. This 

means that there is a reasonable probability that the worst case occurs in the Ping-Only 

algorithm with a complexity of L = logp(N), where N is the number of peers in the system 

and p is the maximum number of entries in each node. However, the highest order of 

frequency is observed with only one order of traversal which represents a benefit in 

terms of the number of exchanged messages to perform the transfer of responsibility 

mechanism. 
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8.3.4 Distribution of the number of entries in nodes 

 

Fig.8.3.4 Distribution of entries per non-empty node in the stationary system state 
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We also see from the above diagram that most of the non-empty nodes have 2 entries 

which are lower than the maximum number of allowed entries p (p = 3 in the system 

configuration). This means that the ranges  remain reasonably balanced among b+ tree-

nodes and the structure if the b+ tree reaches its highest level of performance when the 

mean of the b+ tree fan-out is less than p. This experimental result is thus consistent 

with our expectations. 

 

Finally, we observe that some nodes have only one entry. Performing several key 

deletions results in a leaf-node merger that consists of merging the local range of the 

merged leaf node with another local range in the neighbouring peers by checking the 

ranges of the back-pointed  peers so that the assumption of consecutiveness is 

maintained. The back-pointed peers, pointing to the merger at the next higher level, 

may become under-loaded after merging two of its entries and have to merge them as 

necessary. This procedure is cascaded to the higher levels and may reach the highest 

level node. In the case when a back-pointed peer at the highest level has only two 

entries, his one single resulting entry may be associated with a pointer to another peer 

and thus cannot be removed if there is no internal node from its peer that contains the 

universe of key values in its entries, so that the search operation remain correct. This is 

why we may obtain a few nodes that contain only one entry.  
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8.4 Uneven key insertions 

Starting from the steady state with 1000 peers, we perform  around 250 key insertions 

in a specific range until we reach 1200 peers. In this simulation, the specific range is 

defined by consecutive key values starting from the middle of the universe of key values 

U. If the corresponding inserting key is not empty, we move to the next available 

incremental key value until an empty key is found. .Once we reach 1200 peers, we 

compare the b+ tree structure with the one obtained after performing random key 

insertions. Our simulation program checks during an insertion operation whether the 

requested key exists already. If this is the case, the key is shifted to the right a until an 

available key is found. Therefore this uneven key insertion will involve a sequence of 

key values in the middle of the key universe. The results of these simulations are shown 

in the following subsections. 

8.4.1 Distribution of empty nodes 

Fig.8.4.1 Distribution of the number of empty nodes per peer for random insertions 

scenario and specific key insertions scenario 

-2 0 2 4 6 8 10
0

50

100

150

200

250

300

350
empty nodes distribution (random key insertions)

number of empty nodes per peer

fr
eq

ue
nc

y

-2 0 2 4 6 8 10
0

50

100

150

200

250

300

350
empty nodes distribution (specific key insertions)

number of empty nodes per peer

fr
eq

ue
nc

y



136 
 

We observe in the above diagram an important decrease of the number of peers having 

7 empty nodes. The reason for this decrease is that when performing several key 

insertions in the specific range, the leaf node holding this key is split as its local range 

becomes over-loaded and the corresponding leaf node will then update its back-

pointers. Thus, all the corresponding back-pointers at level 1 of the latter leaf node will 

split their entries and may become over-loaded, which will invoke new non-leaf node 

split by transferring a part of their ranges to an available node at level 1. Therefore, 

many empty nodes may be chosen to become responsible for the transferred ranges 

and the procedure of occupying empty nodes at level 1 will increase as we keep 

performing the insertion operations in the same specific range.  

This will result in an increase of the number of non-empty nodes and decreases the 

number of empty nodes, which explains the decrease of number of nodes having 7 

empty nodes to approximately 275 while the number of nodes having 7 empty nodes in 

the random key insertions scenario is maintained at 340. Thus, this observation is 

consistent with our theoretical expectations. 
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8.4.2 Distribution of the number of back-pointers  

 

Fig.8.4.2 Distribution of the number of back-pointers per non-empty node for random 

insertions scenario and specific key insertions scenario 
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Performing multiple leaf node splits will over-load the entries of the nodes back-pointed 

by the split node which results an increase in the number of non-leaf node splits at level 

1 as we perform more specific key insertions. The back-pointer table of the split non-leaf 

nodes is thus copied to the available nodes at the same level. Performing more specific 

key insertions will therefore significantly increase the number of back-pointers used by 

the nodes at level 1. We conclude that this observation is consistent with our theoretical 

expectations. Notice that the spike around 10 back-pointers is not visible in this figure in 

contrast to Fig. 8.3.2. In fact, Fig. 8.3.2 is obtained when we have a steady state with a 

b+ tree having 1000 peers. Then, we perform random insertion and specific insertion 

operations until we reach a b+ tree with 1200 peers (Fig. 8.4.2). Therefore, we do not 

have the same number of peers. It is perhaps the reason why one does not see the 

spike around 10 back-pointers. 

 

8.4.3 Distribution of the order of traversals 

Fig.8.4.3 Distribution of the order of traversal for random insertions scenario and 

specific key insertions scenario 
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We observe in the above diagram that the order of traversal performed by the Ping-Only 

operation is insignificantly affected by the specific key insertions scenario. The reason is 

that the Ping-Only query is initiated from the highest level node of the initiating peer 

independently of the level in which the non-leaf node occurs. Since the specific key 

insertion operations only affects the non-leaf nodes at level 1 when each leaf node split 

involves an update in its corresponding back-pointers at the next higher level, all the 

higher level nodes are not affected by such a scenario and the order of traversal 

distribution with the Ping-Only strategy remains unchanged. 
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8.5 Conclusion 

 

The simulation results showed that the Ping-Only algorithm can always find a suitable 

peer that is empty or has some common ranges with the initiating peer at the same 

level. Also, our comparative results of Section 8.2 showed that the Ping-Only algorithm 

is much more efficient   than the Ping-Pong algorithm in terms of message complexity 

and order of traversal, with a message complexity of  logp(N), where N is the number of 

peers and p is the maximum number of entries allowed per node  in the b+ tree. The 

major drawback of the Ping-Pong algorithm is that it does not check if the explored 

peers are empty or if they share some common ranges at the same level with the 

initiating peer. However, only the end nodes at the same level are inspected. In 

addition, another disadvantage of the Ping-Pong algorithm is that only back-pointers are 

explored and it is not possible to reach empty nodes at the same level as the initiating 

peer, while the search for an empty node in the b+ tree is crucial for the split and 

merges update operations to be performed properly under the weak-consistency 

invariants. 

 

Our simulation results showed also that the mean number of back-pointers maintained 

by each peer tends to be constant as we grow the b+ tree. This observation, if true, is 

considered advantageous if the size of the back-pointer tables can be maintained to a 

certain limit. In contrary, the number of back-pointers per node is high for some non-

empty nodes. This means that there are only few paths that are used by a huge number 

of peers to reach certain target ranges. This concern remains a open problem for further 

study. 

The simulation results showed also that the number of entries in most non-empty nodes 

of the distributed b+ tree is less than the order of the tree p, where p is the maximum 

number of entries allowed per node, which lets us presume that most of the loads are 

maintained balanced and the distributed b+ tree has an average fan-out less than p. 
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9. Conclusion of the thesis 

 

This thesis is about studying the properties of a distributed tree data-structure that 

allows searches, insertions and deletions of data items. The study consisted of 

distributing a b+ tree structure among several peers in a decentralized approach by 

assigning the responsibility of one branch of the tree, i.e. the path from root to a leaf 

node, to one peer instead of assigning only one tree-node to one peer. Such approach 

assumed weak-consistency conditions to be always true among its nodes but provides 

strong-consistency in terms of search semantics. This decentralization involves three 

weak-consistency invariants that are found to maintain the search operation correct, 

when each update transaction of the data structure maintains these invariants 

 

 

9. 1 Contributions of the thesis 

 

The contributions to this thesis are the following:  

 

(1)  We conducted a validation study of the distributed decentralized b+ tree with 

weak-consistency using the Alloy specification language and we proved that 

these weak-consistency invariants are consistent with the search operation. 

 

(2)  We also defined and tested several algorithms for the transfer of responsibility, 

i.e. the Ping-Pong and the Ping-Only algorithms, and we showed that it is always 

possible to find another peer that can be responsible for the transferred ranges of 

a given node at the same level when performing node split and merge 

operations. 

 

(3)  We also added the assumption of successiveness to the split and merge update 

algorithms described in [1] and revised parts of these algorithms, related to the 
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new assumptions in order to guarantee an optimal level of cost-efficiency for the 

search and update operations under the weak consistency. 

 

(4)  We have also implemented a simulation system for the distributed decentralized 

b+ tree under weak consistency. We have shown by our  simulation results that it 

is possible to distribute a b+ tree structure among many peers by defining weak-

consistency invariants that maintain the correctness of search operations. We 

also proved through simulation that it is possible to maintain relatively equal 

workload for each leaf-node while each non-leaf node maintains a partial 

replication of the state of the distributed b+ tree. The simulation program is also 

designed in such a way that it is relatively easy to make some changes in order 

to obtain a real implementation of peer nodes that would run of different 

computers interconnected by the Internet. 
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9. 2 Future work 

 

We proved using the Alloy program that the weak-consistency invariants introduced in 

Section 4.1 are consistent with the search operations. The next step would be to prove 

that these weak-consistency invariants are necessary and sufficient for the search 

operation to be correct. In other words, we would like to know how weak the distributed 

b+ tree structure could be and remain consistent with the search operation. Also, it 

would be interesting to check that these weak consistency invariants are maintained by 

the node split and merge operations. 

 

 

We also plan to find solutions to overcome the high number of back-pointers and to 

identify the reasons for this phenomenon. One intuitive way to solve this problem is to 

duplicate the entries of the nodes having many back-pointers into some other empty 

nodes and partitioning the back-pointers among these nodes so that it allows different 

nodes to access the same entries through different paths, which may decrease the 

number of back-pointers maintained by the original node. 

 

It would be also interesting to study the fan-out property of b+ trees and find out which 

settings should be used so that the system reaches its highest level of performance in 

terms of load balancing and search message complexity. In particular, what is the most 

suitable number p that may be used to obtain a reasonable mean of the fan-out for the 

b+ tree so that one can keep the loads of the entries balanced among all nodes and 

obtain a relatively low depth that may optimize the cost of the search operation. 

 

Finally, we plan to compare the complexity of the update algorithms of the distributed 

decentralized b+ tree structure under weak-consistency with the fully consistent 

distributed version of the b+ tree. 
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